MAR IVANIOS COLLEGE (AUTONOMOUS)

Affiliated to the University of Kerala, Thiruvananthapuram Kerala

SCHEME AND SYLLABUS FOR THE FOUR YEAR UNDERGRADUATE PROGRAMME (FYUGP)

MAJOR DISCIPLINE BOTANY (With effect from 2024 Admissions)

Approved by the Board of Studies in

Botany

CONTENTS							
Sl	CONTENT TITLE	Page					
1	PREAMBLE	4					
2	GRADUATION ATTRIBUTES AND PROGRAMME OUTCOMES (POS)	6					
3	PROGRAMME SPECIFIC OUTCOMES (PSOS)	10					
4	COURSE AND CREDIT STRUCTURE OF FYUGP	11					
5	COURSE PARTICIPATION/ATTENDANCE	13					
6	ASSESSMENT AND EVALUATION	13					
7	LETTER GRADES AND GRADE POINT	15					
8	COMPUTATION OF SGPA AND CGPA	16					
9	LIST OF COURSES	18					
SEM	IESTER I						
10	DIVERSITY OF PLANTS I	21					
11	INTRODUCTORY BOTANY	26					
12	PLANT SCIENCE- AN OVERVIEW						
13	ORGANIC FARMING	37					
SEM	IESTER II						
14	DIVERSITY OF PLANTS II	43					
15	GREEN INITIATIVES WITH FUTURE PRESPECTIVES	49					
16	ART OF GARDENING	56					
17	SUSTAINABLE TOURISM	62					
SEM	IESTER III						
18	ANATOMY OF FLOWERING PLANTS	69					
19	PLANT PATHOLOGY AND DEFENSE MECHANISM	74					
20	BIODIVERSITY CONSERVATION AND DISASTER MANAGEMENT	81					
21	MICROTECHNIQUES AND BIOPHYSICS	88					
22	WASTE MANAGEMENT	94					
SEM	IESTER IV						

2

23	ANGIOSPERM MORPHOLOGY AND REPRODUCTIVE BOTANY	100
24	CELL AND EVOLUTIONARY BIOLOGY	106
25	MICROBIOLOGY	112
26	PHYTOCHEMISTRY	119
27	ETHNOBOTANY AND PHARMACOGNOSY	125
28	MEDICINAL PLANT MERCHANDISING	130
29	FOOD PROCESSING	137
30	AQUAPONICS AND HYDROPONICS	144
SEM	IESTER V	
31	TAXONOMY OF ANGIOSPERMS AND ECONOMIC BOTANY	150
32	ENVIRONMENTAL SCIENCE	157
33	GENETICS	164
34	PLANT BIOTECHNOLOGY	170
35	FORESTRY AND PHYTOGEOGRAPHY	177
36	MUSHROOM CULTIVATION	184
SEM	IESTER VI	
37	HORTICULTURE AND PLANT BREEDING	189
38	PLANT PHYSIOLOGY AND PHYTOCHEMISTRY	195
39	MOLECULAR BIOLOGY AND BIOINFORMATICS	202
40	FORENSIC BOTANY	210
41	RESEARCH METHODOLOGY AND BIOSTATISTICS	215
42	PLANT FIBRE TECHNOLOGY	222
43	BOARD OF STUDIES IN BOTANY	230

3

PREAMBLE

National Education Policy (NEP 2020) envisions 'higher education as playing an extremely important role in promoting human as well as societal wellbeing and in developing India as envisioned in its Constitution - a democratic, just, socially conscious, cultured, and humane nation upholding liberty, equality, fraternity, and justice for all' (Section 9.1). NEP also expects higher education 'to develop good, thoughtful, wellrounded, and creative individuals, enabling an individual to study one or more specialized areas of interest at a deep level, and also develop character, ethical and Constitutional values, intellectual curiosity, scientific temper, creativity, spirit of service, and 21st century capabilities across a range of disciplines including sciences, social sciences, arts, humanities, languages, as well as professional, technical, and vocational subjects' (Section 9.1.1). Hence, more than the creation of greater opportunities for individual employment, higher education represents the key to more vibrant, socially engaged, cooperative communities and a happier, cohesive, cultured, productive, innovative, progressive, and prosperous nation. (Section 9.1.3). NEP also identifies some of the major problems currently faced by the higher education system in India (Section 9.2) and envisions a complete overhaul and re-energizing of the higher education system to overcome these challenges and thereby deliver high-quality higher education, with equity and inclusion (Section 9.3). One of the major changes which the policy proposes is moving towards a more multidisciplinary undergraduate education (Section 9.3(b)) which develops all capacities of human beings -intellectual, aesthetic, social, physical, emotional, and moral in an integrated manner (Section 11.3). In order to achieve this in its full potential, NEP visions the adjusting of the structure and lengths of degree programmes accordingly. "The undergraduate degree will be of either 3 or 4-year duration, with multiple exit options within this period, with appropriate certifications, e.g., a certificate after completing 1 year in a discipline or field including vocational and professional areas, or a diploma after 2 years of study, or a Bachelor's degree after a 3year programme. The 4-year multidisciplinary Bachelor's programme, however, shall be the preferred option since it allows the opportunity to experience the full range of holistic and multidisciplinary education in addition to a focus on the chosen major and minors as per the choices of the student." (Section 11.9)

In accordance with the NEP 2020, the UGC formulated a new student-centric "Curriculum

and Credit Framework for Undergraduate Programmes (CCFUP)" incorporating a flexible choice-based credit system, multidisciplinary approach, and multiple entry and exit options and establishing three Broad Pathways,

(a) 3-year UG Degree,

(b) 4-year UG Degree (Honours), and

(c) 4-year UG Degree (Honours) with Research)

Accordingly, the Kerala Higher Education Reforms Commission 2022, headed by Prof Shyam B. Menon, has recommended a comprehensive reform in the undergraduate curriculum with the adoption of the 4-year undergraduate Programmes, which will bring undergraduate education in Kerala at par with the universities abroad. Consequently, Kerala State Curriculum Committee for Higher Education 2023 has been constituted, with Dr Suresh Das as Chairman, and they have proposed a model Kerala State Higher Education Curriculum framework for undergraduate education.

The University of Kerala has decided to introduce the Four Year Under Graduate Programmes (FYUGP) from the academic year 2024-2025 onwards in its teaching departments and all affiliated colleges, and has issued many draft documents and conducted college level awareness programmes about the same.

Mar Ivanios College, by virtue of its autonomy status, conferred in 2014 and extended in 2022, vide University Grants Commission (Conferment of Autonomous Status Upon Colleges and Measures for Maintenance of Standards in Autonomous Colleges) Regulations, 2023, has the power to review existing courses/programmes and, restructure, redesign and prescribe its own courses/programmes of study and syllabi and to formulate new courses/programmes within the nomenclature specified by UGC as per the Specification of Degrees 2014 as amended from time to time. Accordingly, the Board of Studies in Botany of Mar Ivanios College (Autonomous) proposed the implementation of the FYUGP scheme with effect from 2024 admission onwards and prepared the scheme and syllabi through many of the meetings and discussions. The Academic Council of the college which met on 30th April gave discussed the proposal and syllabi in detail and approved the same to be implemented from 2024 admission onwards, subject to the final directions of the University of Kerala.

The salient features of the syllabus prepared and presented by the Board of Studies include the following:

- The curriculum is designed based on Outcome Based Education (OBE) approach.
- The curriculum follows Choice-Based Credit System (CBCS): This system allows students to select courses from a prescribed list. A specified number of credits must be earned to award the degree

- The curriculum follows the basic framework, course wise/programme-wise minimum/maximum credits set by the University of Kerala for FYUGP and
- abides by the basic mandatory principles of Four Year Under Graduate Programmes (UoK-FYUGP) Regulations, 2024.
- The curriculum offers comprehensive insights into Plant Biology, Ecology, Taxonomy, Physiology, Genetics, Plant Pathology, Plant Biotechnology
- The course content, teaching methods, and learning outcomes align with the latest developments and advancements in the field.
- It clubs Emerging Research:, Technology, Interdisciplinary Approach and hands on training for an engaging learning experience

Graduate Attributes and Programme Outcomes (POs):

The National Higher Education Qualification Framework (NHEQF) envisages that students on completion of a programme of study must possess and demonstrate the expected graduate profile/attributes acquired through one or more modes of learning. The graduate profile/attributes indicate the quality and feature or characteristics of the graduate of a programme of study, including learning outcomes relating to the disciplinary area(s) relating to the chosen field(s) of learning and generic learning outcomes that are expected to be acquired by a graduate on completion of the programme(s) of study. The graduate profile/attributes include capabilities that help widen the current knowledge base and skills, gain and apply new knowledge and skills, undertake future studies independently, perform well in a chosen career, and play a constructive role as a responsible citizen in the society. The graduate profile/attributes are acquired incrementally and describe a set of competencies that are transferable beyond the study of a particular subject/disciplinary area and programme contexts in which they have been developed. Graduate profile/attributes are fostered through meaningful learning experiences made available through the curriculum and learning experience, the total college/university experience, and a process of critical and reflective thinking. Mar Ivanios College (Autonomous) is fully committed to ensuring the attainment of the necessary graduation attributes by the students. The college has clearly defined its raison de'tre, the philosophy of its existence, through the Motto "Truth Shall Liberate You" (Veritas Vos Liberabit) which refers to the ultimate enlightenment which can emerge only at the intersection of sharp intellect, sound physique, strong mind, staunch ethics, and profound spirituality. This is further made explicit through its Vision, Mission and Goals and the same expect all students who graduate from the college to:

- Have inculcated "the values of truth and charity for the protection and promotion of human dignity and of a cultural heritage, through teaching, research, and extension activities dedicated to society";
- Be co-creators of a vibrant academic community known for its innovation, intellectual rigour and social commitment;
- Be "intellectually trained, morally upright, socially committed, spiritually inspired and ecologically conscious young men and women who would be dedicated to working for the good of society, the nation and the world";
- Have acquired "global competencies and skills";
- Have inculcated a sense of harmony, equality and fraternity among youth, transcending religious, linguistic, regional or sectional diversities; and
- Have developed "scientific temper, humanism and the spirit of inquiry and reform".

Programme Outcomes are the expected student attributes achieved by a student after the student completes the FYUGP from any of the streams/pathways.

The Programme Outcomes (POs) for the FYUGP programmes across all streams and pathways, based on the above core philosophy, and in consonance with the National Higher Education Qualifications Framework (NHEQF) are given below:

By the end of the Four-Year Under-Graduate Programme, students will:

PO 1	Demonstrate the acquisition of all necessary knowledge and skills
	within their disciplinary/ multi-disciplinary areas of learning. These
	include the acquisition of:
	• comprehensive knowledge and coherent understanding of their chosen disciplinary/ interdisciplinary areas of study, their linkages with related fields, and the awareness of current trends in their chosen area of study;
	 essential knowledge for skilled work in chosen field(s), including self-employment and entrepreneurship skills;
	• proficiency in specialized areas within chosen fields of study, encompassing diverse practical skills applicable to different situations within those fields;
	• the ability to apply learned knowledge to novel situations, solve problems, and relate concepts to real-world scenarios rather than just memorizing curriculum content.

PO 2	Acquire problem-solving, critical thinking, analytical reasoning skills									
	and demonstrate creativity in their thought processes by demonstrating									
	the ability to:									
	 solve different kinds of problems in familiar and non-familiar contexts both within and outside their disciplinary/ multidisciplinary areas of learning; apply analytic thought to a body of knowledge, including the analysis and evaluation of policies, and practices, as well as evidence, arguments, claims, and beliefs; analyse and synthesize data from a variety of sources and draw valid conclusions and support them with evidence and examples. the ability to plan, execute and report the results of an experiment or investigation; adhere to scientific temper and ethics in their thought process; adopt innovative, imaginative, lateral thinking, interpersonal skills and emotional intelligence; and 									
PO 3	 incubate entrepreneurial and start-up ideas. Develop a profound environmental dedication by fostering ecological 									
105										
	awareness and engaging in actions that promote sustainable									
	development by achieving the ability to									
	 recognize environmental and sustainability issues, and participate in actions to promote sustainable development as well as mitigate the effects of environmental degradation, climate change, and pollution; contribute to effective waste management, conservation of biological diversity, management of biological resources and biodiversity, forest and wildlife conservation, sustainable development and living, and the preservation of life in all forms. participate in community-engaged services/ developmental activities and thus exemplify the ideals of community engagement and service learning and deep social commitment. 									
PO 4	Accomplish perfect communication, teamwork, and leadership skills,									
	particularly in academic and professional settings, while demonstrating									
	nuance and attention to etiquette in all communicative contexts. This									
	will enable them to:									
	 listen carefully, and read texts and research documents, and present complex information with clarity and precision to different audiences; express thoughts and ideas and communicate effectively through speech and writing using appropriate media; communicate using language which is respectful of gender and minority orientations; act together as a group or a team in the interests of a common cause and working efficiently as a member of a team; 									
	• inspire the team with a vision to achieve a stated goal, and use									

	management skills to guide the team in the right direction.
PO5	Acquire the necessary skills, including 'learning to learn' skills, and
	foster innovative ideas to improve competence and employability,
	keeping pace with the evolving global landscape and technological
	advancements by demonstrating the ability to:
	 pursue learning activities throughout life, through self-paced and self-directed learning aimed at personal development, meeting economic, social, and cultural objectives, and adapting to changing trades and demands of the workplace, including adapting to the changes in work processes in the context of the fourth industrial revolution, through knowledge/ skill development/reskilling; work independently, identify appropriate resources required for further learning; acquire organizational and time management skills to set self-defined goals and targets with timelines; be a proactive life-long learner. use ICT in a variety of learning and work situations; access, evaluate, and use a variety of relevant information sources, and use appropriate software for analysis of data; navigate cyberspaces by following appropriate ethical principles and cyber etiquette. use cutting edge AI tools with equal commitment to efficiency and ethics.
	 think 'out of the box' and generate solutions to complex problems in unfamiliar contexts;
PO6	Develop research-related skills including the ability to conceptualize
	research hypotheses/projects and adopt suitable tools and
	methodologies for analysis with:
	 a keen sense of observation, inquiry, and capability for asking relevant/ appropriate research questions; the ability to problematize, synthesize, and articulate issues and design research proposals; the ability to define problems, formulate appropriate and relevant research questions, formulate hypotheses, test hypotheses using quantitative and qualitative data, establish hypotheses, make inferences based on the analysis and interpretation of data, and predict cause-and effect relationships; the capacity to develop appropriate methodology and tools for data collection; the appropriate use of statistical and other analytical tools and techniques;
	 the ability to plan, execute and report the results of an experiment or investigation; the ability to acquire the understanding of basic research ethics and

	skills in practicing/doing ethics in the field/ in personal research
	work, regardless of the funding authority or the field of study
PO7	Assimilate a sound value system, a sense of autonomy, multicultural
	competence, social commitment, and the spirit of inclusivity and
	empathy by imbibing the spirit and the holistic ethos of the 'Multi-
	Dimensional Ivanian' (MDI) approach. This will enable them to:
	 embrace and practice constitutional, humanistic, ethical, and moral values in life, including universal human values of integrity, truth, righteous conduct, peace, love, nonviolence, scientific temper, citizenship values; identify ethical issues related to work, follow ethical practices and be objective, unbiased, and truthful actions in all aspects of work, including avoiding unethical behaviour such as fabrication, falsification or misrepresentation of data, or committing plagiarism, and adhering to intellectual property rights; exercise responsibility and demonstrate accountability in applying knowledge and/or skills in work and/or learning contexts appropriate for the level of the qualification, including ensuring safety and accountable.
	 security at workplaces; practice responsible global citizenship required for responding to contemporary global challenges, enabling learners to become aware of and understand global issues and to become active promoters of more peaceful, tolerant, inclusive, secure, and sustainable societies; effectively engage in a multicultural group/society and interact respectfully with diverse groups;
	 identify with or understand the perspective, experiences, or points of view and emotions of another individual or group. demonstrate gender sensitivity and adopt a gender-neutral approach, as also empathy for the less advantaged and the differently-abled including those with learning disabilities;
	• demonstrate proficiency in arts/ sports/ games, physical, mental and emotional fitness, entrepreneurial /organizational /pubic speaking/environmental/ community-oriented areas by actively participating in the wide range of co-curricular activities that are available to the students of Mar Ivanios College.

Programme Specific Outcomes (PSOs)

In conformity with the POs, the Programme Specific Outcomes (PSOs) of the Major in BOTANY are drafted as given below:

PSO 1	Have a comprehensive understanding, awareness and appreciation of
	nature
PSO 2	Be able to analyse complex botanical problems, evaluate evidence, and
	formulate well-reasoned conclusions and direct explorative learning

PSO 3	Uphold integrity, professionalism and respect for ethical principles								
PSO 4	Acquire knowledge of plants for enhancing human health, wellness, and quality of life								
PSO 5	Possess strong research and analytical skills and contribute to advancements in the field of botany								
PSO 6	Enhance their laboratory skills using modern tools and techniques								
PSO 7	Integrate interdisciplinary knowledge and technological proficiency								
PSO 8	Address environmental challenges through sustainable practices								
PSO 9	Demonstrate proficiency in plant practices								

Course and Credit Structure of FYUGP

The pathway preferably followed by the department will be Major with Minor or Major with multiple disciplines of study.

Sem	DSC (4 Cr)	DSE (4 Cr)	AEC (3 Cr)	SEC (3 Cr)	MDC (3 Cr)	VAC (3 Cr)	Internship (credit-2)/ Project/ Additional Courses (credit-12)	Total courses	Total credits
I	A-1 B-1 C-1		AEC (Eng)-1 AEC(OL)-2		MDC-1			6	21
Π	A-2 B-2 C-2		AEC (Eng)-3 AEC(OL)-4		MDC-2			6	21
III	A-2 B-2 C-2	DSE A - 1			MDC (Kerala Studies)- 3	VAC -1		6	22
IV	A-4 A-5	DSE A-2		SEC- 1		VAC -2 VAC -3	Internship	6	21
V	A-6 A-7 A-8	DSE -3 DSE -4		SEC- 2				6	23
VI	A-9 A-10 A-11	DSE -5 DSE -6		SEC- 3				6	23
Total	A (11) B (3)	6	4	3	3	3	1*	36	133

The Course and Credit Structure of FYUGP is given below:

	C (3)									
EXIT OPTION AVAILABLE AND STUDENTS WILL BE AWARDED UG DEGREE WITH MAJOR IN A										
VII	A-12 A-13 B/C-4 B/C-5 B/C-6	DSE -7						6	24	
VIII	MOOC courses A -14, A -15						Research Project/ Internship /Project or 03 courses - 12Cr	2+1**/ 3***	20	
Total	A (15) B(3) C (3) B/C(3)	7	4	3	3	3	1*+1**/ 3***	44+1* + 1**/3***	177	

A – Major Discipline

B/C-Minor/Multiple discipline

* - Mandatory Internship at the end of Semester 4

** - Research Project/ Internship /Project as part of Honours with Research

*** - Additional courses of 4 credits each.

Cr - Credits

- Research group project for students exiting after UG 3 years: Students who propose to exit after 3 Year UG programme can do a group project with an extra two credits to obtain research experience in discipline-specific areas of the program. The BoS can decide the number of students for the group and the evaluation criteria.
- Students will be able to take other pathways permissible under University of Kerala Four Year Under Graduate Programmes (UoK-FYUGP) Regulations, 2024, subject to the availability of courses/ faculty/infrastructure of the college.
- The Board of Studies shall prepare and publish a list of online courses at different levels before the commencement of classes in the respective semester offered in various online educational platforms recognised by the academic

council of the college, which can be opted by the students for acquiring additional credits.

Course Participation/Attendance-

- A student shall be permitted to register for the end-semester evaluation of a specific course to acquire the credits only if the student has completed 75% of the prescribed classroom activities in physical, online, or blended modes, as stipulated by the BoS, including any makeup activities as specified by the faculty of that particular course.
- The reasons/cases of permissible authorised leave shall be specified by the college, with the approval of the Academic Council, ratified by the Governing Body.
- The condonation facility shall be availed as per the existing University/college norms.

Assessment and Evaluation

- 1. The assessment of a course shall combine a Continuous Comprehensive Assessment (CCA) and an End Semester Evaluation (ESE).
- 2. For courses without practical/lab modules, 30% weightage shall be given for CCA and the remaining 70% of the weight shall be for the ESE.
- 3. CCA will have two sub-components: Formative Assessment (FA) and Summative Assessment (SA).
- 4. The CCA subcomponents will be given marks as per the following proportions:
 - Discipline specific summative assessment -15% of the total
 - Course attendance 5 % of the total.
 - Discipline specific formative assessment 10% of the total.
- 5. The details of summative and formative assessment criteria, including that of attendance, will be specified by each course coordinator at the beginning of the semester, with the approval of the respective Head of the Department/BoS Chairperson and the Principal, and will be published on the college website.
- 6. For courses with practical/lab modules, 40% weightage shall be given for CCA and the remaining 60% of the weight shall be for the ESE.
- 7. In such cases specified in the item above, the CCA subcomponents will be given marks as per the following proportions:

- Discipline specific summative assessment 10% of the total
- Course attendance (Formative) 5 % of the total
- Discipline specific formative assessment 15% of the total.
- Summative Assessment (Practical Record, Practical test, skill, etc). -10% of the total.

The above is given in detailed tabular form as follows:

SI.	Activity Percentage (%)				
		Theory courses	Courses with practical		
1.	Summative Assessment (written Test or any other discipline specific assessment tools like Open book test, Lab reports, problem-based assignments, individual or team project report, case study report, literature survey, book reviews, video/film/documentary productions, etc)	15	10		
2.	Summative Assessment (Practical Record, Practical test, skill, etc)		10		
3.	Formative Assessment (Attendance)	5	5		
4.	Formative Assessment (Class room activities, observation of skills, viva voce, quiz, interview, oral presentations, in class discussions, computerized adaptive testing, group tutorial work, reflection writing assignments, field study reports, self and peer assessments, service-learning activities, etc.)	10	15		
	Total	30	40		

8. The Course Coordinator shall be responsible for evaluating all the components of CCA for the course in question. Any grievances regarding the same shall be submitted to the Course Coordinator within 5 days of the publication of the same on the department notice board or official class group. If the grievance is not settled at the Course Coordinator level, the student is free to appeal to the Head of the Department, within the next 3 days, who will discuss the same in the Department Level Monitoring Committee (DLMC). If still needed, students can further appeal to the College Level Monitoring Committee (ULMC) in a time period as specified by these bodies.

- 9. Regarding evaluation, one credit will be evaluated for 20 marks in a semester; thus, a 4-credit course will be evaluated for 80 marks, and 3-credit courses for 60 marks. However, any changes to this if brought by the University will be followed.
- 10. The duration of the end semester examination of a course with 4 credits will be 2 hours and the same for a course with 3 credits may be 1.5 hours/2 hours.

Course	Credit		Ma	arks		Lecture		Practical		
	Lecture	Lecture Practical Lecture Practical C		CCA	A (30%) ESE		CCA (40%)		ESE	
					SA (50%)	FA (50%)	(70%)	SA (50%)	FA (50%)	(60%)
	4	0	80	0	12	12	56	0	0	0
	3	1	60	20	9	9	42	4	4	12
4	2	2	40	40	6	6	28	8	8	24
credit	1	3	20	60	3	3	14	12	12	36
courses	0	4	0	80	0	0	0	16	16	48
	Credits		Marks	Marks		Lecture				
	Lecture	Practical	Lecture	Practical	CCA (30%)		ESE	CCA (4	0%)	ESE
3					SA	FA	(70%)	SA	FA	(60%)
credit					(50%)	(50%)		(50%)	(50%)	
courses	3	0	60	0	9	9	42	0	0	0
	2	1	40	20	6	6	28	4	4	12
	1	2	20	40	3	3	14	8	8	24
	0	3	0	60	0	0	0	12	12	36

Mark Distribution Table

Letter Grades and Grade Point

- **1.** A mark system is followed to evaluate each question. For each course in the semester, letter grades and grade points are introduced in a 10-point indirect grading system as per the guidelines given below.
- 2. The Semester Grade Point Average (SGPA) is computed from the grades to measure the student's performance in a given semester. The SGPA is based on the current term's grades, while the Cumulative Grade Point Average (CGPA) is based on the grades in all courses taken after joining the programme of study.
- 3. The weighted grade point will be mentioned in the student's final grade cards, issued by the college, based on the marks obtained.
- 4. The grades and grade points will be given as per the following format:

Letter Grade	Grade Point	Percentage of marks (X) (CCA + ESE together)	Class	
O (Outstanding)	10	<i>X</i> ≥ 95%	FIRST CLASS	
A+ (Excellent)	9	$85\% \le X < 95\%$	WITH	
A (Very Good)	8	$75\% \le X < 85\%$	DISTINCTION	
B+ (Good)	7	$65\% \le X < 75\%$		
B (Above Average)	6	$55\% \le X < 65\%$	FIRST CLASS	
C (Average)	5	$45\% \le X < 55\%$	SECOND CLASS	
P (Pass)*	4	$35\% \le X < 45\%$	THIRD CLASS	
F (Fail)	0	X< 35%	FAIL	
Ab (Absent)	0		FAIL	

- For a course PASS, separate minimum of 35% is needed for CCA and ESE.
- Less than 35% in either ESE or CCA is FAIL.

Computation of SGPA and CGPA

SGPA (Semester Grade Point Average) and CGPA (cumulative Grade Point Average) will be computed as follows:

1. The SGPA is the ratio of the sum of the product of the number of credits with the grade points scored by a student in all the courses taken by a student and the sum of the number of credits of all the courses undergone by a student in the semester. That is,

$$S_j = \frac{\sum (C_{ij} \times G_{ij})}{\sum C_{ij}}$$

where S_j is the SGPA in the jthsemester,

 C_{ij} is the number of credits for the ith course in the jthsemester, and

 G_{ij} is the the grade point scored by the student in the ith course in the jth semester.

2. The CGPA is also calculated in the same manner considering all the courses undergone by a student over all the semesters of a programme. That is, $CGPA = \frac{\sum (C_i \times S_i)}{\sum C_i}$

where S_i is the SGPA in the ith semester and

 $\sum C_i$ is the total number of credits in the ith semester.

- 3. The SGPA and CGPA shall be rounded to 2 decimal points and reported in the transcripts
- 4. **Requirement for the successful completion of a Semester**: SGPA of 4 or above and a PASS in all the courses, that is, minimum total of 35% mark in each course (CCA + ESE), with a separate minimum of 35% mark for both CCA and ESE. Appropriate and permissible rules of rounding off numbers may be adopted as per decisions of the Academic Council.

Dr. Bindu Alex Chairman BoS Mar Ivanios College (Autonomous), Thiruvananthapuram

Thiruvananthapuram 10-05-2024

List of Courses

COURSE CODE	OURSE CODE COURSE TITLE		CREDITS	HOUR DISTRIBUTION PER WEEK			
	SEMESTER I Aca	domic Loval 1	0 100	L	Т	Р	
MIUK1DSCBOT	DIVERSITY OF		<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
100.1	PLANTS I	DSCA1	4	2	1	2	
MIUK1DSCBOT	INTRODUCTORY						
101.1	BOTANY	DSCB/C	4	2	1	2	
MIUK1DSCBOT	PLANT SCIENCE- AN		4	2	1	2	
102.1	OVERVIEW	DSCB/C *	4	2	1	2	
MIUK1DSCBOT 103.1	ORGANIC FARMING	MDC	3	2	0	2	
	SEMESTER II Aca	ademic Level 1	00-199				
MIUK2DSCBOT 150.1	DIVERSITY OF PLANTS II	DSCA2	4	2	1	2	
MIUK2DSCBOT 151.1	GREEN INITIATIVES WITH FUTURE PRESPECTIVES	DSCB/C *	4	2	1	2	
MIUK2DSCBOT 152.1	ART OF GARDENING	DSCB/C	4	2	1	2	
MIUK2MDCBO T 153.1	SUSTAINABLE TOURISM	MDC	3	2	0	2	
	SEMESTER III A	cademic Level	200-299				
MIUK3DSCBOT 200.1	ANATOMY OF FLOWERING PLANTS	DSC A3	4	2	1	2	
MIUK3DSCBOT 201.1	PLANT PATHOLOGY AND DEFENSE MECHANISM	DSC B/C *	4	2	1	2	
MIUK3DSCBOT 202.1	BIODIVERSITY CONSERVATION AND DISASTER MANAGEMENT	DSC B/C	4	2	1	2	

MIUK3 DSE	MICROTECHNIQUES	DCE	4	2	1	2
BOT 203.1	AND BIOPHYSICS	DSE	4	2	1	2
MIUK3VACBOT	WASTE	VAC	3	2	0	2
204.1	MANAGEMENT	VAC	5	2	U	2
	SEMESTER IV Ac	cademic Level	200-299			
MIUK4DSCBOT 250.1	ANGIOSPERM MORPHOLOGY AND REPRODUCTIVE BOTANY	DSCA4	4	2	1	2
MIUK4DSCBOT 251.1	CELL AND EVOLUTIONARY BIOLOGY	DSCA5	4	2	1	2
MIUK4DSCBOT 252.1	MICROBIOLOGY	DSCB/C	4	2	1	2
MIUK4DSCBOT 253.1	PHYTOCHEMISTRY	DSCB/C	4	2	1	2
MIUK4DSEBOT 254.1	ETHNOBOTANY AND PHARMACOGNOSY	DSE	4	2	1	2
MIUK4SECBOT 255.1	MEDICINAL PLANT MERCHANDISING	SEC	3	2	0	2
MIUK4VACBOT 256.1	FOOD PROCESSING	VAC	3	2	0	2
MIUK4VACBOT 257.1	AQUAPONICS AND HYDROPONICS	VAC	3	2	0	2
	SEMESTER V Ac	ademic Level 3	800-399			
MIUK5DSCBOT 300.1	TAXONOMY OF ANGIOSPERMS AND ECONOMIC BOTANY	DSC A6	4	2	1	2
MIUK5DSCBOT 301.1	ENVIRONMENTAL SCIENCE	DSC A7	4	2	1	2
MIUK5DSCBOT 302.1	GENETICS	DSC A8	4	2	1	2
MIUK5DSEBOT 303.1	PLANT BIOTECHNOLOGY	DSE	4	2	1	2

MIUK5DSEBOT 304.1	FORESTRY AND PHYTOGEOGRAPHY	DSE *	4	2	1	2
MIUK5SECBOT 305.1	MUSHROOM CULTIVATION	SEC	3	2	0	2
	SEMESTER VI Ac	ademic Level .	300-399			
MIUK6 DSCBOT 350.1	HORTICULTURE AND PLANT BREEDING	DSC A9	4	2	1	2
MIUK6 DSCBOT 351.1	PLANT PHYSIOLOGY AND PHYTOCHEMISTRY	DSC A10	4	2	1	2
MIUK6DSCBOT 352.1	MOLECULAR BIOLOGY AND BIOINFORMATICS	DSC A11	4	2	1	2
MIUK6DSEBOT 353.1	FORENSIC BOTANY	DSE *	4	2	1	2
MIUK6DSEBOT 354.1	RESEARCH METHODOLOGY AND BIOSTATISTICS	DSE	4	2	1	2
MIUK6SECBOT 355.1	PLANT FIBRE TECHNOLOGY	SEC	3	2	0	2

* Mainly for Botany and Biotechnology Interdisciplinary Course

SEMESTER I

Mar Ivanios College (Autonomous)

Discipline	BOTANY	BOTANY					
Course Code	MIUK1DSCE	OT 100.1					
Course Title	DIVERSITY	OF PLAN	ГS I				
Type of Course	DSC A1						
Semester	Ι						
Academic Level	100 - 149						
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours/Week		
	4	3 hours	-	2 hours	5		
Pre-requisites	Curiosity in p	Curiosity in plants					
Course	Eye Candy for	or budding	botanist, kr	nowledge abo	out fascinating		
Summary	plants						

Detailed Syllabus:

Module	Unit	Content	Hrs						
I		History	7						
	1	Origin							
	2	Contribution of Botanist with special reference to Indian Scientists.							
	3	Botany as Mother Science, Influence on other science fields- medicine, art, Paintings, literary works, poetry, aesthetic values, philosophical approach.							
	4	Activity- Prepare a short biography on any luminary in the field							
II		Wonders of Plant World	7						

	5	Fascinating World of plants				
	6	Overview of plant diversity, List of largest/ smallest plants,				
		Biggest/ smallest flowers, Largest to smallest seeds				
	7	Heterotrophic plants				
	8	Adaptations for pollination				
	9	Activity- Explore and document the various adaptations in				
		flowers				
III		Classification	8			
	10	Two kingdom classification, Five kingdom classification				
	11	Introduction to plant kingdom (Algae, Fungi, Bryophyta,				
		Pteridophyta, Gymnosperm, Angiosperm)				
	12	Classification of plants based on plant taxonomy, life cycle,				
		flowering, non- flowering and number of seeds.				
	13	ctivity- Collect, preserve or propagate any two bryophytes				
		and pteridophytes				
IV	H	uman-Plant Synergy: Exploring Collaborative Dynamics	8			
	14	Plants and Civilization- Plants of Antiquity, Plants in Human				
		Health through the Ages				
	15	The cultural and social significance of plants in different				
		societies, including their roles in rituals, traditions, art,				
		literature, and spiritual practices. Special reference to the				
		culture of Kerala.				
	16	Plants used as pigments in art, Poetic Botany Movement				
	17	Activity- a) Discover the plants mentioned in popular culture,				
		like music, poetry, mural art etc				
V		Hotspots of Western Ghats	15			
V	18	Hotspots of Western Ghats Geography, Climate, Biodiversity, Hotspots and Importance.	15			
V	18 19	-	15			
V		Geography, Climate, Biodiversity, Hotspots and Importance.	15			

Practicals (30 hrs)

- 1. Visit to Sites in Western Ghats
- 2. Photograph and Document.

3. Open-ended Exploration across various domains such as agriculture, medicine, culture, art literature and ecology on the vital role of plants in human life.

References:

- 1 Hill, A. F. (1952). Economic botany. A textbook of useful plants and plant products. *Economic botany. A textbook of useful plants and plant products.*, (2nd edn).
- 2 Pandey, B. P. (1999). *Economic botany*. S. Chand Publishing.
- 3 Chowdery, S.J. S.K. Murthi (2000) *Plant Diversity and Conservation* In India An Overview
- 4 .Kochhar S.L. (2016). Economic Botany A Comprehensive Study (5th Ed).
 Cambridge English
- 5 Peter Tompkins · Christopher Bird. (2020) The Secret Life of Plants: A Fascinating Account of the Physical, Emotional, and Spiritual Relations Between Plants and Man. Audiobook.
- 6 Sambamurty A.U. (2020). A Text Book of Modern Economic Botany. CBS.
- 7 Alexopoulos C.J& Mims C.V(1988). Introductory Mycology, JohnWiley&Sons.
- 8 Bilgarmi, K. S &Saha, L. C. (2010). *A Textbook of Algae*. CBS Publishers, New Delhi.
- 9 Chapman V.J & Chapman D.J (1973). The Algae, Macmillan.
- 10 Dube H C (2012). An Introduction to Fungi 4th Edition, Scientific Publishers
- 11 Dube H C (2007). A text book of Fungi, Bacteria & Virus student edition, Scientific Publishers.
- 12 Asthana D.K and MeeraAsthana, (2006).AText Book of Environmental Studies,S. Chand & Company Ltd. New Delhi

Course Outcomes

No.	Upon completion of the course the graduate	Cognitive	PSO
	will be able to	Level	addressed
CO-1	Understand the contributions of Indian Botanists	U	PSO-1,
CO-2	Create enthusiasm in Students	U, An	PSO-1,7
CO-3	Familiarizing students about Basics of	U, An	PSO-1

R-		classification, plant types and vital position of		
Remember,		Western Ghats		
U-	CO-4	Understanding tips for creating documentary	C, Ap	PSO-6
Understan				

d, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: DIVERSITY OF PLANTS I

Credits: 2:1:2 (Lecture:Tutorial:Practical)

CO No.	СО	ΡΟ	PSO	Cognitive Level	Knowledge Category	Lecture (L) /Tutorial (T)/ Practical (P)
1	UnderstandthecontributionsofIndianBotanists	1	1	U	F	L
2	Create enthusiasm in Students	2,3	1,7	U, An	М	T /P
3	Familiarizing students about Basics of classification, plant types and vital position of Western Ghats	1	1	U, An	F	L
4	Understanding tips for creating documentary	5	6	C, Ap	P, M	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	Р О 1	PO 2	P O 3	P O 4	P O 5	Р О 6	P O 7	P S O 1	P S O 2	P S O 3	P S O 4	P S O 5	P S O 6	P S O 7	P S O 8	P S O 9
CO1	3	-	-	-	-	-	-	3	-	-	-	-	-	-	-	-
CO2	-	2	2	-	-	-	-	3	-	-	-	2	-	3	-	-
CO3	3	-	-	-	-	-	-	3	-	-	-	-	-	-	-	-
CO4	-	-	-	-	2	-	-	-	-	-	-	-	2	-	-	-

Correlation Levels:

- a. (NA),
- b. 1 (Mild),
- c. 2 (Moderate)
- d. 3 (High)

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	√			✓
CO 2		√		√
CO 3	√	√	\checkmark	\checkmark
CO 4			\checkmark	

Mar Ivanios College (Autonomous)

Discipline	BOTANY								
Course Code	MIUK1DSCBOT 101.1								
Course Title	INTRODUCTO	INTRODUCTORY BOTANY							
Type of	DSC B/C								
Course									
Semester	Ι								
Academic	100 - 149								
Level									
Course	Credit	Lecture	Tutorial	Practical	Total				
Details		per week	per week	per week	Hours/Week				
	4	3 hours	-	2 hours	5				
Pre-	Needs Curiosity a	and interest i	n Plants.						
requisites									
Course	By the end of the	course, stu	dents will be	e able to expl	ain what plant				
Summary	life, their life proc	cess, evoluti	on is.						

Detailed Syllabus:

Module	Unit	Content	Hrs					
I		Chemistry of plant life						
	1	What is life?						
		PLANT LIFE- What are Plants? What are the parts of a plant?						
		How do plants reproduce? Why are the plants important?						
		What is a seed? Where do seeds come from?						
	2	From seeds to plants:- Planting seeds, Growing plants without						
		seeds, Plants need water, Plats grow towards light, Where						
		does our food come from. Photosynthesis, Respiration,						
		Growth and death in plants /Life cycle of a plant. (brief).						
	3	Plant nutrients, Plant food elements, The value of soil						

		elements as plant food, Role of plant food elements inn their	
		growth, Inorganic plant toxins and stimulants.	
	4	Activity:- Chart preparation and exhibition of different	
		process in plant life.	
II		Evolution	8
	5	How plants evolved? From green algae.	
		Plant diversity: evolutionary trends/Ancestral plants;	
		"Bryophytes"	
	6	Got leaves- Lycophytes and ferns, Got seeds -Gymnosperms,	
		Got flowers- Angiosperms	
	7	Avascular and vascular plants, Diversity of vascular plants	
		Angiosperms- Monocots-dicots, Leaves, stems.	
	8	Activity 1 :- Power point presentation of plant evolution	
III		Plant Behaviour	7
	9	The reproductive adaptations of angiosperm include flowers	
		and fruits, Flower and pollination, fruits, seeds and dispersal	
	10	Angiosperms are very diverse in flowering and fruit setting	
	11	Agiosperm - central importance in ecological communities	
		(Defence mechanism for survival, Interactions to increase in	
		dominance)	
	12	Ecological plant community	
	13	Activity: 1. Setting up experiment to demonstrate	
		phototropism, the bending of plant stems towards light.	
		Activity:2. Setting experiments with seeds or seedlings in	
		different orientations (e.g., horizontal and vertical). Students	
		need to observe and compare the direction of root and stem	
		growth and discuss the mechanisms.	_
IV		Plants and people	5
	14	Food, medicines	
	15	Sacred, magical and monstrous plants	
	16	Plant people and sustainability	1

	17	Plant communities, energy and production	
	18	Global change and plants	
V		Evaluation	15
	19	Human welfare greatly depends on plants - justify	
	20	Evolution to Genetic engineering	
	21	Biofuels offer the opportunities of reducing fossil fuel	
		dependency	

Practicals: (30 hrs)

- 1. Setting a garden in your campus with different types of plants.
- 2. Explore seed dispersal mechanisms by collecting and studying seeds from different plant species.
- Divide students into different groups. Assign them different roles and have them role-play interactions such as defence responses or symbiotic relationships.
 Refrences:
- Uno, Storey& Moore, Principles of Botany, 2001, McGraw Hill. Kenrick,P. & Crane, P. The Origin & early diversification of land plants (1997), Smithsonian Institute Press.
- Bell, P.R. & Hensley, A.R. Green plants; their Origin & Diversity (2nd ed.), 2000, Cambridge University Press
- 3. Frenchel, T. The origin & early Evolution of life, 2002, Oxford University Press.
- Hait, G., Ghosh, A. and Bhattacharya, K. A Text Book of Botany (Vols. I, II & III), 2007, New Central Book Agency
- 5. Lock, A.J., & Evans, D.E., Plant Biology, 2001, Viva Books
- Mitra, D., Guha, J. & Chowdhuri, S.K. Studies in Botany (Vols. I & II), Latest Ed., Das Printers
 - •

Course Outcomes

No.	Upon completion of the course the graduate	Cognitive	PSO
	will be able to	Level	addresse
			d
CO-1	Explain what is plant life	U	PSO-1,4
CO-2	Explain how plant function, reproduce and are	R, U	PSO- 1,4

	adapted to their environment		
CO-3	Recognize major groups of plants and identify and discuss their evolution	An, E	PSO-4
CO-4	Understand the importance of plants to people and other organisms.	E, Ap	PSO-4
CO-5	Understand the fascinating ways in which plants respond to their environment and interact with other organisms	U, E	PSO-1,4

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: INTRODUCTORY BOTANY

CO No.	СО	PO	PSO	Cognitive	Knowledge	Lecture (L)
				Level	Category	/Tutorial (T)/ Practical (P)
CO-1	Explain what is plant life	1	1,4	U	F	L
CO-2	Explain how plant function, reproduce and are adapted to their environment	1	1,4	R, U	F, C	T /P
CO-3	Recognize major groups of plants and identify and discuss their evolution	1	4	An, E	F,C	L
CO-4	Understand the importance of plants to people	1,7	4	E, Ap	М	L

Credits: 2:1:2 (Lecture:Tutorial:Practical)

	and other					
	organisms.					
CO-5	Understand the	1,3	1,4	U, E	М	L/T
	fascinating ways					
	in which plants					
	respond to their					
	environment and					
	interact with other					
	organisms					

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	P	PO	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
	0	2	0	0	0	0	0	S	S	S	S	S	S	S	S	S
	1		3	4	5	6	7	0	0	0	0	0	0	0	0	0
								1	2	3	4	5	6	7	8	9
CO1	3	-	-	-	-	-	-	3	-	2	-	-	-	-	-	-
CO2	3	-	-	-	-	-	-	-	1	-	-	2	-	-	-	-
CO3	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO4	2	-	-	-	-	-	2	-	-	-	2	-	-	-	-	-
CO5	2	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-

Correlation Levels:

- a. (NA),
- b. 1 (Mild),
- c. 2 (Moderate)
- d. 3 (High)

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal	Assignment	Project	End Semester
	Exam		Evaluation	Examinations
CO 1		√		✓
CO 2	√	√	\checkmark	\checkmark
CO 3	√	√	\checkmark	\checkmark
CO 4		√		\checkmark
CO 5		√		\checkmark

Mapping of COs to Assessment Rubrics :

Mar Ivanios College (Autonomous)

Discipline	BOTANY							
Course Code	MIUK1DSCBOT 102.1							
Course Title	PLANT SCIENC	CE: AN OV	ERVIEW					
Type of	DSC B/C							
Course								
Semester	Ι							
Academic	100 – 149							
Level								
Course	Credit	Lecture	Tutorial	Practical	Total			
Details		per week	per week	per week	Hours/Week			
	4	3 hours	-	2 hours	5			
Pre-	Needs Curiosity a	and interest i	n Plants.					
requisites								
Course	The course aims	to offer ba	sic understa	nding about	the plant cell			
Summary	structure and its o	composition	and to expl	ore the avenu	ues offered for			
	career in the field	of Botany						

Detailed Syllabus:

Module	Unit	t Content										
I		The Plant Network										
	1	Plants as dynamic systems- Plant sociobiology -										
		Interconnectedness and Adaptation in Open Systems										
		(cooperation and communication, behaviors)										
	2	Social Learning and Memory in plants - mycorrhizal network, plant micro biome										
	3	Kin Recognition and Altruism										
	4	Activity- Review latest literature and present a report										

II		Plant cell structure							
	5	Key vocabulary terms relating to plant cell structure.							
	6	With the help of a permanent slide draw and label the parts of							
		a							
		plant cell.							
	7	Study and demonstrate the functions of plant cell parts.							
	8	Activity- Collect five different plants and study the structure							
		of common cells in the collected plants.							
III		Plants: An Overview	10						
	9	Dicot and Monocot – features							
	10	Structure of leaf, root and stem (brief- main characters only)							
	11	Study the modifications of leaf, root and Stem and their							
		functions.							
	12	Activity- Label the part of the leaf, root, stem with the help of							
		a real plant.							
IV		Interdisciplinary Reach of Botanical Science							
	13	Space Science- space exploration and habitation, plant growth							
		in microgravity environments, bioregenerative life support							
		systems, and extraterrestrial agriculture for long-duration							
		space missions							
	14	Medicine							
	15	Activity- Case study on "Artemisinin: The journey from							
		natural product to Nobel Prize"							
V		Exploring Botany and Plant Science Careers	15						
	16	Invited talks by eminent professionals							
	17	Efficiency to find out a job related to plant science							
	18	To build a determined personality through this course.							
Practical	ls. (30	hrs)							

Practicals: (30 hrs.)

- 1. Explore the campus and its surroundings.
- 2. Collect different types of plant and plant parts.
- **3.** Photograph and document.
 - •

References:

- Gagliano, M., Vyazovskiy, V. V., Borbély, A. A., Grimonprez, M., & Depczynski, M. (2016). Learning by association in plants. Scientific reports, 6(1), 38427.
- 2. Michmizos, D., & Hilioti, Z. (2019). A roadmap towards a functional paradigm for learning & memory in plants. Journal of plant physiology, 232, 209-215.
- Simard, S. W. (2018). Mycorrhizal networks facilitate tree communication, learning, and memory. In Memory and learning in plants (pp. 191-213). Springer, Cham.
- Leopold, A. C. (2014). Smart plants: memory and communication without brains. Plant signaling & behavior, 9(10), e972268.
- Karban, R., Shiojiri, K., Ishizaki, S., Wetzel, W. C., & Evans, R. Y. (2013). Kin recognition affects plant communication and defence. Proceedings of the Royal Society B: Biological Sciences, 280(1756), 20123062.
- Anten, N. P., & Chen, B. J. (2021). Detect thy family: mechanisms, ecology and agricultural aspects of kin recognition in plants. Plant, Cell & Environment, 44(4), 1059-1071.
- Rendle, A. B. (2005). Flowering Plants and Their Classification (Vol. 2). Daya Books.
- Michael, O. S. (2015). Artemisinin: The journey from natural product to Nobel Prize. Annals of Ibadan Postgraduate Medicine, 13(2), 113-117.
- 9. Pollan, M. (2002). *The botany of desire: A plant's-eye view of the world*. Random house trade paperbacks.
- Smith, A. M., Coupland, G., Dolan, L., Harberd, N., Jones, J., Martin, C., & Amey, A. (2009). *Plant biology*. Garland Science.
- 11. Capon, B. (2010). Botany for gardeners. Timber Press.
- Coutler E. G. (1969) Plant Anatomy Part I Cells and Tissues Edward Arnold, London
- 13. Esau K (1965) Plant Anatomy- Wiley Eastern, NewYork.

Course Outcomes

No.	Upon completion of the course the graduate	Cognitive	PSO
	will be able to	Level	addresse
			d
CO-1	Identify and classify plants based on their	U	PSO-1
	characteristics		
CO -2	Describe the structure and function of plant parts.	U, E	PSO-1
CO-3	Realize the importance of botany and related	An	PSO-1, 7
	career.		
CO-4	Explore the diversity of plants.	Ap, E	PSO-1

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: PLANT SCIENCE: AN OVERVIEW

Credits: 2:1:2 (Lecture:Tutorial:Practical)

CO No.	CO	РО	PSO	Cognitive Level	Knowledge Category	Lecture (L) /Tutorial (T)/ Practical (P)
1	Identify and classify plantsbasedoncharacteristics	1	1	U	F	L
2	Describe the structure and function of plant parts.	1	1	U, E	F,C	Т /Р
3	Realize the importance of botany and related career.	1,5	1,7	An	М	L
4	Explore the diversity of plants.	1	1	Ap, E	Р	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	Р	?O	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
	0	2	0	0	0	0	0	S	S	S	S	S	S	S	S	S
	1		3	4	5	6	7	0	0	0	0	0	0	0	0	0
								1	2	3	4	5	6	7	8	9
CO1	3	-	-	-	-	-	-	3	-	-	-	-	-	-	-	-
CO2	2	-	-	-	-	-	-	3	-	-	-	-	-	-	-	-
CO3	3	-	-	-	2	-	-	3	-	-	-	-	-	1	-	-
CO4	3	-	-	-	-	-	-	3	-	-	-	-	-	-	-	-

Correlation Levels:

- a. (NA),
- b. 1 (Mild),
- c. 2 (Moderate)
- d. 3 (High)

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal	Assignment	Project	End	Semester
	Exam		Evaluation	Examinations	
CO 1	√			√	
CO 2	\checkmark	\checkmark	\checkmark	√	
CO 3	√	~	\checkmark	1	
CO 4		V			

Mar Ivanios College (Autonomous)

Discipline	BOTANY							
Course Code	MIUK1DSCBOT	MIUK1DSCBOT 103.1						
Course Title	ORGANIC FAR	MING						
Type of	MDC							
Course								
Semester	Ι							
Academic	100 – 149							
Level								
Course	Credit	Lecture	Tutorial	Practical	Total			
Details		per week	per week	per week	Hours/Week			
	3	2 hours	-	2 hours	4			
Pre-	Interest in plant p	ractices						
requisites								
Course	Will be able to	o understar	d the con	cept of org	anic farming,			
Summary	understand the s	cope and in	mportance of	of organic fa	arming and to			
	ensure safe and a	healthy foo	d production					
	Healthy	Soil-Health	y Plants-Su	stainable Lif	fe			

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		FUNDAMENTALS OF ORGANIC FARMING	6
	1	Introduction, Need and benefits of organic farming.	
	2	Organic farming: Definition, Concept, Opportunity, Benefits	
		and Challenge, Types of Farming (Advantage & disadvantage	
		of each system).	
	3	Sustainable cultivation with a promising future: Integrated	
		Farming system (Combination of Organic and Inorganic),	

		Mixed Farming, Intercropping. Importance and benefits of intercropping and crop rotation.	
	4	Certification and Marketing: Inspection, Certification and Labelling procedure, Marketing and Export.	
	5	Activity: Visit different farming areas and make a chart of Comparison of organic and conventional farming.	
II		PREPARATION AND APPLICATION OF ORGANIC	8
	INPU	T	
	6	Need and benefits of organic fertilizers.	
	7	Preparation of organic fertilizers and converting soil into organic (Demonstrations and land preparation from an organic farm)	
	8	Organic manures and methods of composting: Preparation of green pesticides such as panchagavya, jeevamrutam, vermicomposting, Azolla cultivation.	
	9	Activity: Visit to Organic farm to study the various components, identification and utilization of Organic products.	
III		USE OF MICRO ORGANISMS	10
	10	Need, benefits and management of microorganisms. Active promotion of soil organisms. Soil microorganisms as fertilizer drivers. Bio fertilizers, definition, importance and advantages, Sources of Bio fertilizers -Bacteria, Cyanobacteria, Mycorrhiza and PSM.	
	11	Definition, Composition of Soil- Soil texture and Types, Soil structure, Soil Profile, Humus & Soil pH, Role of Soil in Organic Farming, Soil factors affecting plant Growth: light, heat, water, humidity, pH and Nutrition, C: N ratio of good fertile Soil, Soil fertility as the basis of organic production, Humus building (Brief description only). How to increase humus content in long term and increase the nutrient supply in short	

		term?							
	12	Activity: Method of application of different types of fertilizer							
		and							
		Green manure.							
IV		BOTANICAL AND FUNGAL BIOPESTICIDES							
	13	Biological control agents and their characteristics.							
	14	Types of biopesticides:- advantages and disadvantages							
	15	Characteristics of biological fungicides-Trichoderma,							
		Pseudomonas and Fusarium species; production and							
		processing of biological fungicides.							
	16	Bioinsecticides and nematicides							
	17	Activity: Preparation of Neem products and other botanicals							
		for Pest and disease control.							
V		PLANT NUTRIENTS	15						
	18	Effect of plant population on growth and yield based on							
		sources of nutrients-Prepare some plant nutrients with the							
		help of organic farmers.							
	19	Nutrient use efficiency, meaning and factors affecting nutrient							
		use efficiency.							
	20	Activity: Preparation of Organic Compost-Over ground							
		compost, Pit compost, Liquid compost, Vermi compost (any							
		one)							

Practicals: (30 hrs.)

- 1. Practicing and experiencing in Farmer's Fields.
- 2. Preparation of vermicompost.
- **3.** Training on preparation of Neem kernel powder and Neem Kernel Aquaous Extract (NKAE)
- 4. Preparation of Panchagavya/ Jeevamrutam

•

References:

- 1. Sharma, Arun K. 2002. A Handbook of Organic farming. Agrobios, India.
- 2. Sathe, T.V. 2004, Vermiculture and Organic Farming. Daya Publishers.

3. Alvares, C. 1996. The Organic Farming Source Book. The Other India Press, Mapusa, Goa.

4. Gupta, M., 2004. Organic Agriculture Development in India. ABD publishers, Jaipur, India.

5. S.P. Palaniappan, K. Annadurai, 1999. Organic Farming- Theory and Practice, Scientific

Publishers, Jodhpur, India.

6. Dr. Pratiksha Raghuvanoki. Handbook of Organic Farming.

7. Organic Farming: The Ecological System- Agronomy Monograph 54, ASA, USA.

8. Subha Rao, N.S. 200, Soil Microbiology, Oxford & IBH Publishers, New Delhi

9. Dongarjal R. P. and Zade S.B. 2019. Insect Ecology and Integrated Pest Management, Akinik Publications, New Delhi.

10. Guideline of National Project on Organic Farming, Department of Agriculture and Cooperation, INM Division, Ministry of Agriculture, Govt. of India

11. Dushyent Gehlot. 2005. Organic Farming- standards, accreditation, certification and inspection. Agribios, India.

No.	Upon completion of the course the graduate	Cognitive	PSO
	will be able to	Level	addresse
			d
CO-1	Acquire knowledge and skills necessary to	U, Ap	PSO-4
	practice sustainable agriculture and the production		
	of healthy, organic food.		
CO-2	Understand various principles, need and prospect	Ap, An	PSO-8
	of organic farming including the importance of		
	sustainability, biodiversity and ecological balance.		
CO -3	Gain hands on experience through field work,	Ap, C	PSO-6
	farm visits or practical exercises to apply their		
	knowledge in a real world setting.		
CO-4	Explore the significance of soil health in organic	R, U,	PSO-9
	farming and various methods to enhance soil		
	fertility through composting and crop rotation.		

Course Outcomes

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: ORGANIC FARMING

Credits: 2:0:2 (Lecture:Tutorial:Practical)

CO	СО	PO	PSO	Cognitive	Knowledge	Lecture
No.				Level	Category	(L)
						/Tutorial
						(T)/
						Practical
						(P)
CO-	Acquire knowledge and	1	4	U, Ap	F, M	L
1	skills necessary to					
	practice sustainable					
	agriculture and the					
	production of healthy,					
	organic food.					
CO-	Understand various	3	8	Ap, An	С	T /P
2	principles, need and					
	prospect of organic					
	farming including the					
	importance of					
	sustainability,					
	biodiversity and					
	ecological balance.					
CO -	Gain hands on	5	6	Ap, C	C, P	L/P
3	experience through					
	field work, farm visits					
	or practical exercises to					
	apply their knowledge					
	in a real world setting.					
CO-	Explore the	1,5	9	R, U,	P, M	L
4	significance of soil					
	health in organic					

farming and various		
methods to enhance		
soil fertility through		
composting and crop		
rotation.		

F-Factual, C-	Conceptual.	P-Procedural	, M-Metacognitive
I I actually C	conceptual,	I IIOCCUUIUI	, in the cace of the content of

Mapping of COs with PSOs and POs :

	Р О 1	Р О 2	РО 3	РО 4	PO 5	PO 6	РО 7	PS O1	PS O2	PS O3	PS O4	PS O5	PS O6	PS O7	PS O8	PS O9
CO1	3	-	-	-	-	-	-	-	-	-	3	-	-	-	-	-
CO2	-	-	2	-	-	-	-	-	-	-	-	-	-	-	2	-
CO3	-	-	-	-	2	-	-	-	-	-	-	-	2	-	-	-
CO4	2	-	-	-	3	-	-	-	-	-	-	-	-	-	-	3

Correlation Levels:

a. - (NA), 1 (Mild), 2 (Moderate) 3 (High)

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal	Assignment	Project	End	Semester
	Exam		Evaluation	Examinations	
CO 1	√			V	
CO 2		\checkmark	\checkmark	\checkmark	
CO 3	\checkmark		\checkmark	\checkmark	
CO 4	√	\checkmark		√	

SEMESTER II

Mar Ivanios College (Autonomous)

Discipline	BOTAN Y							
Course Code	MIUK2DSCBOT 15	MIUK2DSCBOT 150.1						
Course Title	DIVERSITY OF	PLANTS-II						
Type of	DSC A2							
Course								
Semester	Π							
Academic	150-199							
Level								
Course	Credit	Lecture	Tutorial	Practical	Total			
Details		per week	per week	per week	Hours/Week			
	4	3 hours	-	2 hours	5			
Pre-	Have a grasp of the	ne ecologica	l roles and h	abitats of lov	ver plants.			
requisites								
Course	The course gives	an overview	of plant div	ersity, introd	lucing students			
Summary	to the major grou	ps of plants	s and paleob	otany. The	course include			
	classification, m	orphology,	life cycle	s, ecologica	al roles, and			
	economic signifi	icance of	major plant	groups. St	udents would			
	compare the mo	rphology, p	ohysiology,	and life cyc	cles of Algae,			
	Fungi, Lichen,	Bryophytes	, Pteridoph	ytes and	Gymnosperms,			
	identifying both s	similarities a	nd difference	es among the	ese group. The			
	course includes for	ossilization j	process and	fossil types.				

Detailed Syllabus:

Mod	Un	Content	H				
ule	it		rs				
Ι		Phycology	8				
	1	Detailed study of classification by F.E. Fritsch, Centres of algal					
		research in India, Contributions of an Indian Phycologists- M.O.P.					
		Iyengar.					
	2	Diversity of Algae - Habitat, thallus organisation, pigments and					
		reproduction.					
	3	Salient features of the following major groups with reference to the					
		Systematic position, structure, reproduction and life cycle of the types					
		given below (Excluding the developmental details)					
		a. Cyanophyceae – <i>Nostoc</i>					
		b. Chlorophyceae – Oedogonium					
		e. Phaeophyceae – Sargassum					
		d. Rhodophyceae – Polysiphonia					
II		Mycology & Lichenology 9					
	4						
		General characters, affinities with plants and animals, Classification					
		based on Ainsworth (1973). Contributions of an Indian Mycologists-					
		C.V. Subramanian					
	5.	Distinguishing characters of different classes of fungi representing the					
		following					
		genera (Excluding Developmental details).					
		a. Zygomycotina - <i>Rhizopus</i>					
		Ascomycotina -Peziza					
	ſ	c. Basidiomycotina -Agaricus					
	6.	Economic importance of Fungi					
	7	Lichenology: General account and economic importance; the					
		structure,					

		reproduction and life cycle of Usnea.	
III		Bryology	7
	8.	Introduction and general characters, adaptations to land habit; range	
		of thallus organization. Classification Proskauer (1957). Contribution	
		of an Indian Bryologists - Shiv Ram Kashyap	
	9.	Morphology, anatomy and reproduction of following types	
		of generation of the following types (Developmental details are not	
		required)	
		Riccia, Funaria	
	10	Economic importance of Bryophytes.	
IV		Pteridology	6
	11	Introduction: Classification of General characters morphological and	
		phylogenetic classification, Life cycle of pteridophyte, Contribution of	
		an Indian Pteridologist – Dr. S.S. Bir.	
	12	Study of the habitat habit, internal structure, reproduction and life	
		cycle of the following types (Developmental details not required).	
		Psilotum, Selaginella and Pteris	
	13	Stelar evolution in Pteridophytes - Economic importance of	
		Pteridophytes	
V		Gymnosperms and Paleobotany	15
	14.	Introduction –General characters and classification of Gymnosperms (Sporne,	, :
	15.	Study of the habit, anatomy, reproduction and life cycle of the	
		following types (Developmental details are not required) Cycas and	
		Pinus	
	16	Evolutionary trends in gymnosperms, Economic importance of	
		Gymnosperms	
	17.	Geological time scale, Fossil formation, types of fossils (compression,	
		impression, petrifaction, coal balls).	
	18	Fossil Pteridophytes- Rhynia, Lepidodendron.	
		Fossil gymnosperms- Lyginopteris	
	19.	Activity - Submit the collected specimen of Algae, Fungi, Bryophyte,	

Pteridophyte an	d Gymnosperms

Practicals (30 hrs.)

1. Identify the algal specimens up to the generic level, make labelled sketches of the specimens observed and submission of record.

2. A detailed study of structure and reproductive structures of types of fungi given in the syllabus and submission of record *Rhizopus, Peziza and Usnea*.

3. A detailed study of types mentioned in the syllabus - Riccia- Habit- T.S of Thallus,

Funaria- Habit, gametophyte with sporophyte

4. A detailed study of types mentioned in the syllabus *Psilotum* -Habit, Stem T.S., Synangium T.S.

5. *Selaginella* - Habit, stem and rhizophore, T.S, V.S of strobilus, Megasporophyll and Microsporophylls

6. Pteris - Habit, Rhizome and Petiole

7. Field trips to be conducted for the students to get familiarized with local flora

No.	Upon completion of the course the graduate	Cognitive	PSO
	will be able to	Level	addresse
			d
CO1	Gain knowledge about the diversity of Algae,	U	PSO 1
	Fungi, Bryophytes and Pteridophytes and		
	Gymnosperms including their classification, and		
	morphology.		
CO 2	Ability to analyse and identify various major	U, Ap	PSO 1
	group of plants and their ecology.		
CO-3	Understand the economic importance of major	U	PSO 1,4
	groups		
CO4	Observe and evaluate the disease symptoms	Ар	PSO 1,4
	caused by algae and fungi		

Course Outcomes

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: DIVERSITY OF PLANTS-II

Credits: 2:1:2 (Lecture:Tutorial:Practical)

CO	СО	PO	PSO	Cognitive	Knowledge	Lecture (L)
No.				Level	Category	/Tutorial
						(T)/
						Practical (P)
CO-	Gain knowledge	1	1	U	F	L
1	about the diversity of					
	Algae, Fungi,					
	Bryophytes and					
	Pteridophytes and					
	Gymnosperms					
	including their					
	classification, and					
	morphology.					
CO-	Ability to analyse and	1	1	U, Ap	F, C	T /P
2	identify various major					
	group of plants and					
	their ecology.					
CO-	Understand the	1	1,4	U	F,C	L
3	economic importance					
	of major groups					
CO-	Observe and evaluate	1	1,4	Ap	Р	Р
4	the disease symptoms					
	caused by algae and					
	fungi					

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

P PO	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
0 2	0	0	0	0	0	S	S	S	S	S	S	S	S	S
1	3	4	5	6	7	0	0	0	0	0	0	0	0	0

								1	2	3	4	5	6	7	8	9
CO1	3	-	-	-	-	-	-	2	-	-	-	-	-	-	-	-
CO2	3	-	-	-	-	-	-	2	-	-	-	-	-	-	-	-
CO3	3	-	-	-	-	-	-	2	-	-	1	-	-	-	-	-
CO4	3	-	-	-	-	-	-	2	-	-	1	-	-	-	-	-

Correlation Levels:

- a. (NA),
- b. 1 (Mild),
- c. 2 (Moderate)
- d. 3 (High)

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal	Assignment	Project	End Semester
	Exam		Evaluation	Examinations
CO	\checkmark	√		\checkmark
1				
СО	\checkmark	√		√
2				
СО	\checkmark	√		✓
3				
CO	\checkmark	√		√
4				

Mar Ivanios College (Autonomous)

Discipline	Botany							
Course Code	MIUK2DSCBOT 151.1							
Course Title	GREEN INITIA	TIVES WI	TH FUTUR	RE PERSPE	CTIVE			
Type of	DSC B/C							
Course								
Semester	Π							
Academic	150-199							
Level								
Course	Credit	Lecture	Tutorial	Practical	Total			
Details		per week	per week	per week	Hours/Week			
	4	3 hours	-	2 hours	5			
Pre-	Conscience on en	vironmental	protection a	and sustainab	le living.			
requisites								
Course	The course provid	les students	with a comp	orehensive ur	derstanding of			
Summary	environmental ch	environmental challenges, sustainable development principles, and						
	practical solution	ns for build	ling a gree	ner and mo	re sustainable			
	future.							

Detailed Syllabus:

Module	Unit	Content	Hrs
I		Introduction	5
	1	Importance of green initiative, Sustainability- definition and	
		concepts, historical context and evolution of sustainability	
		practices; sustainable development goals (SDGs); Triple	
		bottom line concepts; holistic approaches to sustainability-	

		principles and strategies.	
II		Policies	6
	2	Policy frameworks and Governance- Government- funding and investment, research and innovation, international cooperation; NGOs- advocacy and awareness, monitoring and accountability, capacity building, partnership and collaboration; Cooperatives –community engagement, collective action, resource management, social and economic development and policy advocacy.	
III		Green initiatives	15
	3	Initiatives in energy sector- appliance upgrades, LED lighting, Insulation and air sealing on the building, solar photovoltaic, wind turbines, hydroelectric power, Biomass energy.	
	4	Initiatives in transportation solutions- Electric vehicles (EVs), Public transportation systems, Bicycle sharing programmes, alternative fuels (biofuels, hydrogen), urban planning design- walkability and pedestrian friendly design, Access to green space and nature.	
	5	Zero waste initiatives- principles and practices-Reduce, Reuse and Recycle principles(3R's)- package free shops, community composting programmes, textile recycling, reusable cups and containers, zero waste schools and businesses.	
IV		Green building technology	4
	6	Concepts and strategies; Passive design, net zero energy buildings, biophilic design, cradle to cradle (C2C) design, green infrastructure, resilient design, healthy building materials.	
	7	Living walls and green roofs, permeable pavements, urban forest- Environmental, social and economic benefits	
V		Considerations	15
	8	Challenges and difficulties - Cost barriers, lack of	

		understanding, awareness campaigns and education, inadequate policies and inconsistent regulations, limitations with existing infrastructure, challenges in the existing infrastructure, behavioural barriers, complexities in global supply chains and financial instability.
9	9	Future perspectives- low carbon economy, carbon pricing mechanism, precision agriculture, biomimicry and regenerative design, take-make-dispose models, resilience at community level, global collaboration and international agreements, empowering of individuals in schools, colleges and universities.
1	10	Carbon footprint- calculation- ways to minimise it.
1	11	Lifestyle changes to achieve sustainability

Practicals (30 hrs)

- 1 An institutional visit to Energy Management Cell (EMC), Sreekaryam, TVM
- 2 Collection and sorting and processing of waste, and production of biogas or biofuels.
- 3 Making use of knowledge obtained through syllabi, awareness campaigns to the builders, locals and school students
- 4 Convert organic waste such as weeds, plant parts etc. into useful products
- 5 Students can conduct a waste audit to quantify and categorize the types of waste generated by their colleges, university and community.
- 6 Students can participate in tree planting on road sides, industrial areas and urban areas.

Reference

- 1. Godfrey Boyle (2012): Renewable Energy: Power for a Sustainable Future.
- 2. Donald L. Klass (1998): Biomass for Renewable Energy, Fuels, and Chemicals.
- 3. William R. Black (2010): Sustainable Transportation: Problems and Solutions.
- Bea Johnson (2013). Zero Waste Home: The Ultimate Guide to Simplifying Your Life by Reducing Your Waste.
- 5. William McDonough and Michael Braungart (2002). Cradle to Cradle: Remaking the Way We Make Things.

- 6. Carol Kraemer (2007): Recycling and Waste Management Guide to the Internet.
- 7. Thomas Hootman (2012). Net Zero Energy Design: A Guide for Commercial Architecture.
- Eric Toensmeier (2016). The Carbon Farming Solution: A Global Toolkit of Perennial Crops and Regenerative Agriculture Practices for Climate Change Mitigation and Food Security
- 9. Steffen Lehmann (2014): The Low-Carbon City: Transforming Urban Systems.
- Joseph G. Allen and John D. Macomber (2020). Healthy Buildings: How Indoor Spaces Drive Performance and Productivity.

No.	Upon completion of the course the graduate	Cognitive	PSO
	will be able to	Level	addresse
			d
CO-1	Identify and prioritize green initiatives in the	E	PSO 1,8
	energy sector , and develop strategies for		
	promoting sustainability in various sectors,		
	including energy, transportation, waste		
	management, and urban planning		
CO-2	Evaluate the effectiveness of zero waste strategies	E	PSO 4 8
	in reducing waste generation and promoting		
	resource conservation		
CO-3	Identify and analyse challenges and difficulties	U, An	PSO 2
	associated with green initiatives, including cost		
	barriers, policy gaps, infrastructure limitations,		
	and behavioural barriers.		
CO-4	Propose strategies for empowering individuals	С	PSO 7
	through education and awareness, and promoting		
	international cooperation and agreements for		
	sustainability.		

Course Outcomes

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: GREEN INITIATIVES WITH FUTURE PERSPECTIVE

Credits: 2:1:	2 (Lecture: Tute	orial:Practical)
---------------	------------------	------------------

СО	СО	PO	PSO	Cognitive	Knowledge	Lecture
No.				Level	Category	(L) /Tutorial (T)/ Practical (P)
CO-1	Identify and prioritize green initiatives in the energy sector , and develop strategies for promoting sustainability in various sectors, including energy, transportation, waste management, and urban planning.	3	1,8	Ap	М	L
CO-2	Evaluatetheeffectivenessofzerowastestrategiesinreducing $waste$ strategiesgenerationandpromotingresourceconservation $waste$	7	4,8	Ε	М	L/T
CO-3	Identify and analyze challenges and difficulties associated with green initiatives, including cost barriers,	2	2	U, An	P,M	Т

	policy gap	os,				
	infrastructure					
	limitations, an	nd				
	behavioral barriers.					
CO-4	Propose strategies f	or 3	7	C	М	Р
	empowering individua	ıls				
	through education an	nd				
	awareness, an	nd				
	promoting internation	al				
	cooperation a	nd				
	agreements f	or				
	sustainability.					

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

	Р	PO	Р	P	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
	0	2	0	0	0	0	0	S	S	S	S	S	S	S	S	S
	1		3	4	5	6	7	0	0	0	0	0	0	0	0	0
								1	2	3	4	5	6	7	8	9
CO1	-	-	3	-	-	-	-	3	-	-	-	-	-	-	3	-
CO2	-	-	-	-	-	-	2	-	-	-	2	-	-	-	3	-
CO3	-	1	-	-	-	-	-	-	2	-	-	-	-	-	-	-
CO4	-	-	2	-	-	-	-	-	-	-	-	-	-	3	-	-

Mapping of COs with PSOs and POs :

Correlation Levels:

a. - (NA),

- b. 1 (Mild),
- c. 2 (Moderate)
- d. 3 (High)

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	√	√	√	√
CO 2	√	√		√
CO 3	√		\checkmark	\checkmark
CO 4	√	√	\checkmark	\checkmark

Mar Ivanios College (Autonomous)

Discipline	BOTANY						
Course Code	MIUK2DSCBOT 152.1						
Course Title	ART OF GARD	ENING					
Type of	DSC B/C						
Course							
Semester	П						
Academic	150 – 199						
Level							
Course	Credit	Lecture	Tutorial	Practical	Total		
Details		per week	per week	per week	Hours/Week		
	4	3	-	2	5		
Pre-	Interest in garden	ing					
requisites							
Course	Students will be	able to le	arn gardeni	ng, qualities	of successful		
Summary	gardener,						
	and also familiar	ize with var	rious types	of plants, see	eds, fertilizers,		
	pesticides, differe	ent tools &	equipment u	used in the g	ardening work		
	and their use.						

Detailed Syllabus:

Module	Unit	Content					
Ι		Introduction to gardening					
	1	Concepts and components of garden.					
	2	2 Elements and principles of garden.					
	3	Qualities of a successful gardener.					

	4	Activity: Make a verbatim report with a gardener.								
II		Types of gardens	10							
	5	Flowering garden, Herb Garden, Butterfly Garden,								
		Kitchen/Vegetable Garden, Indoor Garden, Foliage Garden,								
		Seasonal flower garden, Water Garden, Vertical Garden, Rock Garden.								
	6	Medicinal garden, Meditation Garden, Balcony Garden, Raised Garden, Religious Garden.								
	7	Familiarize different types and construct a model garden in								
		your campus and also visit a regional garden and identify and								
		study the plants, seeds, fertilizers and pesticides used in								
		different gardens,								
III		Introduction to landscaping	10							
	8	Importance and Scope. Elements and Designs of landscaping.								
	9	Classification of garden plants: annuals, biennials, perennials,								
		herbs, shrubs, trees, climbers, creepers, succulents, cacti,								
		ferns, gymnosperms, palms, orchids, bulbous ornamentals.								
		Awareness about pergolas, topiary, hedges, edges, trophy,								
		paths, fountains.								
	10	Activity: Submit a layout of landscape.	_							
IV		GARDEN ACCESSORIES	5							
	11	Containers in nursery management – portrays, Pots and containers – different types.								
	12	Tools & implements: garden spade, rake, fork, garden shears,								
		secateurs, pruning saw, chain saw, lopping shears, pole								
		pruners, mowers, brush cutter, garden tillers								
	13	Activity: Document different garden tools								
V		GARDENING PRACTICES	15							
	14	Pruning, bur lapping, crown thinning- crown raising, crown								
		reduction, pinching, thinning, heading back.								
	15	Weeding and its application.								
		1								

16	Nursery lay out and structures - green house, shade house,	
	rain shelter, mist chamber, potting shed, composting shed.	

Practicals (30 hrs.)

- 1. Visit to a local nursery.
- 2. Identifying of important ornamental trees, shrubs, climbers and creepers, hedge and edge plants, ferns, cacti and succulents from a reputed nursery.
- 3. Construct a typical garden in your campus/home.

References

- 1. Acquaah J (2009), Horticulture principles and practices, 4th edition, PHI learning Pvt. Ltd.
- 2. Rao Manibhushan K. (1991), Textbook of horticulture. MaC Millan India Ltd.
- Gangulee H. C. and Kar A. K. (2004), College Botany Vol II, New Central Book Agency
- 4. Sharma V. K. (1999), Encyclopaedia of Practical Horticulture, Vol I –IV, Deep and Deep Publ. Pvt. Ltd.
- 5. 5. Gopal Samy Iyengar ,1990, Complete Gardening In India, IBH, India
- 6. Indoor gardening, Vishnu Swarup, ICAR, New Delhi.
- Nambison, K.M.P. 1992. Design elements of landscape gardening. Oxford and IBH Publications, New Delhi.
- 8. Pratibha and P.Trivedi, 1990. Beautiful shrubs, ICAR, New Delhi.
- 9. Pratibha and P. Trivedi. 1987. Home Gardening. ICAR, New Delhi.

Course Outcomes

No.	Upon completion of the course the graduate	Cognitive	PSO
	will be able to	Level	addresse
			d
CO-1	Understand concepts and components of garden	U	PSO-1
CO-2	Identify different types of garden and garden tools	R, U, Ap	PSO- 1
CO-3	Make use of knowledge in designing a land.	An, C	PSO-5
CO-4	Select a container based on the type of plants.	U, Ap	PSO- 6

CO- 5	Implement the green practices in gardening.	Ap, E	PSO-2
-------	---	-------	-------

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: ART OF GARDENING

Credits: 2:1:2 (Lecture:Tutorial:Practical)

CO	СО	PO	PSO	Cognitive	Knowledge	Lecture (L)
No.				Level	Category	/Tutorial (T)/
						Practical (P)
CO-1	Understand	1	1	U	F	L
	concepts and					
	components of					
	garden					
CO-2	Identify different	1	1	R, U, Ap	F, C	Т /Р
	types of garden					
	and garden tools					
CO-3	Make use of	2	5	An, C	Р	L
	knowledge in					
	designing a land.					
CO-4	Select a container	1	6	U, Ap	Р	Р
	based on the type					
	of plants.					
CO-	Implement the	7	2	Ap, E	М	L/T
5	green practices in					
	gardening.					

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	P	90	Р	P	Р	P	Р	Р	Р	Р	Р	Р	P	P	Р	Р
	0	2	0	0	0	0	0	S	S	S	S	S	S	S	S	S
	1		3	4	5	6	7	0	0	0	0	0	0	0	0	0
								1	2	3	4	5	6	7	8	9
CO1	3	-	-	-	-	-	-	3	-	-	-	-	-	-	-	-
CO2	3	-	-	-	-	-	-	3	-	-	-	-	-	-	-	-
CO3	-	2	-	-	-	-	-	-	-	-	-	2	-	-	-	-
CO4	3	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-
CO5	-	-	-	-	-	-	1	-	-	-	-	-	-	2	-	-

Correlation Levels:

- a. (NA),
- b. 1 (Mild),
- c. 2 (Moderate)
- d. 3 (high)

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal	Assignment	Project	End Semester
	Exam		Evaluation	Examinations
CO	√		\checkmark	\checkmark
1				
CO	\checkmark		\checkmark	\checkmark
2				
CO	\checkmark		\checkmark	\checkmark
3				

CO	\checkmark	\checkmark	
4			
CO	√	√	
5			

Mar Ivanios College (Autonomous)

Discipline	BOTANY													
Course Code	MIUK2MDCBOT 1	.53.1												
Course Title	SUSTAINABLE	TOURIS	М											
Type of	MDC													
Course														
Semester	Π													
Academic	150-199)-199												
Level														
Course	Credit	Credit Lecture Tutorial Practical Total												
Details		per week	per week	per week	Hours/Week									
	3	3 hours	-	2 hours	5									
Pre-	Ability to appreci	ate nature ir	n all its form											
requisites														
Course	Aim to equip s	tudents wit	h a compre	ehensive und	lerstanding of									
Summary	various aspects re	lated to sust	ainable tour	ism.										

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		Introduction to Sustainable tourism	8
	1	History and scope, Components, Principles and characteristics of Sustainable tourism.	
	2	Site diagnostics, Target groups, industry and its stake holders, Resources and products of Sustainable tourism, Commercialization of Sustainable tourism.	
	3	Sustainable Resource Management and Sustainable Tourism Development.	

	4	Activity: Nature walks or hikes to explore natural habitats,	
		observe wildlife, and learn about the local flora and fauna.	
II		Sustainable tourism- Vistas	6
	5	Agrotourism/ Farm tourism, Geo- ecotourism, Cultural- ecotourism – tangible and intangible heritages and tourism, Mass Tourism, Alternative Tourism, & Responsible Tourism.	
	6	Management plans.	
	7	Activity: Exploring rivers, lakes, or coastal areas to	1
		experience natural landscapes from a different perspective	
		while minimizing disturbance to the environment and to	
		report whether it is sustainable or not, if not suggestions.	
III		Tourism resources	9
	8	Eco-regions; Vegetation types; Protected areas; Endemism	
		and biodiversity hotspots.	
	9	Historical monuments and historical sites; Adventure	
		ecotourism destinations, Ecotourism potential (with reference	
		to Kerala).	
	10	Sustainable tourism agenda:- Conference, Convention and	
		Declaration Related To Environment- Johannesburg, Rio	
		Declaration (Agenda 21), Quebec Declaration, View Of	
		UNWTO	
	11	Activity: Conduct tree planting and reforestation programmes	
		in your locality with barcoding and continuous evaluation and	
		protection.	
IV		Community participation	7
	12	Present scenario, Future prospects (year-round ecotourism);	
		Sustainability of ecotourism; Ecotourism in developed	
		countries.	
	13	Community based ecotourism: case studies; Joint Forest	1
		management, Role of NGOs, Ethical and legal aspects.	
	14	Respect local traditions and customs, Aims to enhance	
		cultural preservation	

	15	Eco travel and environmental awareness; Impacts of ecotourism, Green report card, Eco-labelling; Environmental sustainability practices.	
	16	Activity: Visit to a local village to engage with local communities and learn about their traditions, lifestyles, and conservation practices.	
V		Economic Benefits	15
	17	Contribution to the local economy by generating income for communities through tourism- Account on related activities such as accommodations, restaurants, tour guides, and handicrafts.	
	18	Revenue generated from tourism - reinvested into community development	
	19	Creating employment opportunities, Supporting local businesses.	
	20	Development of tourism infrastructure to minimize negative impacts on the environment and communities.	

Practicals (30hrs)

1. Visit to any one Tourist destination in Kerala viz. Kovalam, Kumarakom, Thekkady and Wayanad and prepare a documentary.

References

- Bramwell, B. and Lane, B. 1993. Sustainable tourism: An evolving global approach Journal of Sustainable Tourism, 1 (1): 1-5.
- Butler, R.W. 1999. Sustainable tourism: A state of the art review. Tourism Geographies, 1 (1): 7-25.
- Clarke , J. 1997 . A framework of approaches to sustainable tourism . Journal of Sustainable Tourism , 5 (3): 224 – 233 .
- 4. Farrell , B. and Twining-Ward , L. 2005 . Seven steps towards sustainability: Tourism in the context of new knowledge . Journal of Sustainable Tourism , 13 (2): 109 122

- Hardy , A.L. and Beeton , R.J.S. 2001 . Sustainable tourism as maintainable tourism: Managing resources for more than average outcomes . Journal of Sustainable Tourism , 9 (3): 168 – 192.
- Mowforth , M. and Munt , I. 2003 . Tourism and sustainability: Development and new tourism in the Third World , London : Routledge
- Sustainable tourism value chain analysis as a tool to evaluate tourism's contribution to the sustainable development goals and local Indigenous.communities
- 8. Odeeth Lara-Morales and Amelia Clarke ., Published online: 30 Nov 2022
- 9. World Tourism Organization (WTO) . 1998 . Guide for local authorities on developing sustainable tourism , Madrid : World Tourism Organization
- Gurung, H. B. (Ed.). (2018). Sustainable Tourism Practices in the Indian Himalayas. Springer.
- 11. Kerala Tourism. (n.d.). Responsible Tourism. Retrieved from https://www.keralatourism.org/responsible-tourism/
- Kumar, S. (2019). Sustainable Tourism Development in Kerala: A Study on Community Participation and Tourism Impacts. In Proceedings of the International Conference on Tourism Research (ICTR), pp. 183-189.
- Mathew, K. J., & Sinha, S. (2018). Community-Based Sustainable Tourism Initiatives: A Case Study of Kumarakom in Kerala, India. In Sustainable Development and Biodiversity (pp. 355-365). Springer.
- Pillai, S. K., & Sreekumar, T. T. (2016). Community Participation in Sustainable Tourism Development: A Study of Kerala. International Journal of Social Science and Economic Research, 1(11), 3799-3813.
- Rajan, K. S. (2017). Impact of Sustainable Tourism Development on Local Livelihoods in Kerala: A Case Study of Kumarakom. Journal of Social and Economic Development, 19(2), 231-252.
- Suresh, N. (2015). Community Participation in Sustainable Tourism Development: A Case Study of Thekkady, Kerala. In Sustainable Tourism: Challenges and Opportunities (pp. 207-221). Springer.
- Thampi, B. V. (2014). Tourism and Environment: A Case Study of Sustainable Tourism in Kerala. IOSR Journal of Humanities and Social Science, 19(2), 52-57.

Course Outcomes

No.	Upon completion of the course the graduate	Cognitive	PSO
	will be able to	Level	addresse
			d
CO-1	Equips students with a comprehensive	U, Ap	PSO- 1
	understanding of various aspects related to		
	sustainable tourism.		
CO 2	Student understand the cultural and social	R, U	PSO-2
	dimensions of tourism and learn how tourism can		
	positively or negatively affect local communities,		
	cultures, and traditions.		
CO-3	Students get familiar with policies, regulations,	U, E	PSO-1
	and planning strategies aimed at promoting		
	sustainable tourism development at local, national,		
	and international levels.		
CO -5	Apply sustainable principles to the different	U, Ap	PSO-5
	sectors of tourism		

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: SUSTAINABLE TOURISM

Credits: 2:0:2 (Lecture:Tutorial:Practical)

СО	СО	PO	PSO	Cognitive	Knowledge	Lecture
No.				Level	Category	(L)
						/Tutorial
						(T)/
						Practical
						(P)
CO-1	Equips students with a	1	1	U, Ap	С	L
	comprehensive					
	understanding of various					

	aspects related to sustainable tourism.					
CO 2	Student understand the cultural and social dimensions of tourism and learn how tourism can positively or negatively affect local communities, cultures, and traditions.	7	2	R, U	С	L/T
CO-3	Students get familiar with policies, regulations, and planning strategies aimed at promoting sustainable tourism development at local, national, and international levels.	1	1	U, E	Р	L
CO -4	Applysustainableprinciples to the differentsectors of tourism	2	5	E, C	М	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	Р	90	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
	0	2	0	0	0	0	0	S	S	S	S	S	S	S	S	S
	1		3	4	5	6	7	0	0	0	0	0	0	0	0	0
								1	2	3	4	5	6	7	8	9
CO1	3	-	-	-	-	-	-	3	-	-	-	-	-	-	-	-
CO2	-	-	-	-	-	-	1	-	3	-	-	-	-	-	-	-
CO3	2	-	-	-	-	-	-	3	-	-	-	-	-	-	-	-

	CO4	-	2	-	-	-	-	-	-	-	-	-	1	-	-	-	-
--	-----	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

Correlation Levels:

- a. (NA),
- b. 1 (Mild),
- c. 2 (Moderate)
- d. 3 (high)

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal	Assignment	Project	End Semester
	Exam		Evaluation	Examinations
CO 1	\checkmark	√		\checkmark
CO 2	\checkmark	√	\checkmark	\checkmark
CO 3	\checkmark			\checkmark
CO 4	\checkmark		\checkmark	\checkmark

SEMESTER III

Mar Ivanios College (Autonomous)

Discipline	BOTANY								
Course Code	MIUK3DSCBOT 200.1								
Course Title	ANATOMY OF FLOWERING PLANTS								
Type of	DSC A3								
Course									
Semester	III								
Academic	· 200 – 249								
Level									
Course	Credit	dit Lecture Tutorial Practical Total							
Details	per week per week per week Hours/We								
	4 3 hours - 2 hours 5								
Pre-	Understanding of the basic principles of plant biology,								
requisites									
Course	This course help to cover the structure and function of various parts								
Summary	of plants, ranging from cells and tissues to organs and systems.								

Detailed Syllabus :

Module	Unit	Content	Hrs
I		Tissues	5
	1	Meristems - Definition, Classification based on origin, position, growth patterns, functions. Apical meristems & theories on apical organization - Apical cell theory, Histogen theory, Tunica - Corpus theory	
	2	Organization of root apex in dicots & monocots.	

	3	Permanent tissues – definition, classification (Simple,						
		Complex and Secretory tissues)						
II		Tissue systems	5					
	4	Epidermal tissue systems-stomata - structure and functions -						
		Types						
	5	Ground tissue systems						
	6	Vascular tissue systems						
	7	Activity- Photograph/ Drawings of Epidermal outgrowths of						
		different plants.						
III		Internal structure I	9					
	8	Primary Structure – Root, stem and leaf (Dicot & Monocot)						
	9	Annual rings, heart wood and sap wood, hard wood and soft						
		wood, tyloses, ring porous wood and diffuse porous wood						
	10	Activity- Document						
		a) Different properties of wood (Nature, porosity,						
		durability, colour, texture, industrial value) from						
		nearby wood industry.						
		b) Count the age of wood present in nearby wood mills						
IV	Internal structure II							
	11	Secondary Structure- Formation and activity of cambial ring,						
		Secondary vascular tissue, Periderm formation – lenticels						
	12	Secondary Thickening - Monocot and Dicot stem, Monocot						
		and dicot root.						
	13	Activity- Collect and document herbs and shrubs that show						
		secondary thickening						
V		Anomalous Secondary Growth	15					
	14	Anomalous secondary thickening – Bignonia, Boerhaavia						
	15	Activity- Document the variation in secondary thickening						
		amongst various ecotypes of Bignonia, Boerhaavia						
	0 TT)							

Practicals (30 Hrs)

1. Primary structure- Dicot stem- Centella, Monocot stem- Grass

- 2. Secondary structure Stem (Normal type) Vernonia
- 3. Secondary structure Root (Normal type)- Carica papaya, Aerial root-Ficus
- 4. Anomalous secondary thickening Bignonia, Boerhaavia
 - •

Suggested readings

- David F. Cutler, Ted Botha and Dennis W M. Stevenson (2008) Plant Anatomy: An Applied Approach, John Wiley and Sons Ltd.
- Eames, A. J., & Mac Daniels, L. H. (1947). An introduction to plant anatomy., (2nd ed).
- 3. Esau K (1965) Plant Anatomy- Wiley Eastern, NewYork
- 4. Esau K (2006) Anatomy of seed plants 2nd edition Wiley Eastern, NewYork
- 5. Fahn A (1995) Plant Anatomy, Elsevier Science and Technology, Oxford, UK
- Pandey B P (1997) Plant Anatomy S Chand and Co. New Delhi Biology- Mc Graw Hill Co, New York
- 7. Pandey B P (2012) Plant Anatomy. S Chand Publishing
- 8. Pijush Roy (2006) Plant Anatomy. New Central Book Agency (P)Ltd
- 9. Vashista P C (1984) Plant Anatomy, Pradeep Publications, Jalandhar

Course Outcomes

No.	Upon completion of the course the graduate will	Cognitiv	PSO
	be able to	e	addressed
		Level	
CO-	Identify and differentiate different plant tissues,	U	PSO-1
1	tissue systems and organs.		
CO-	Discriminate between dicot and monocot plants	U, An	PSO-1
2	based on anatomical features.		
CO-	Knowledge of internal structures of stem and root	R, An	PSO-1
3	to analyse the stages of plant growth and		
	characteristics of Wood		
CO-	Familiarity with epidermal outgrowths and	R, U	PSO-1
4	stomatal types.		

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: ANATOMY OF FLOWERING PLANTS

Credits: 2:1:2 (Lecture:	Tutorial:	Practica	ı l)

CO	СО	PO	PSO	Cognitive	Knowledge	Lecture
No.				Level	Category	(L)
						/Tutorial
						(T)/
						Practical
						(P)
CO-1	Identify and	1	1	U	F	L
	differentiate different					
	plant tissues, tissue					
	systems and organs.					
CO-2	Discriminate between	1	1	U, An	F, C	T /P
	dicot and monocot					
	plants based on					
	anatomical features.					
CO-3	Knowledge of internal	1	1	R, An	F, C	L
	structures of stem and					
	root to analyse the					
	stages of plant growth					
	and characteristics of					
	wood.					
CO-4	Familiarity with	1	1	R, U	Р	Р
	epidermal outgrowths					
	and stomatal types.					

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	P	PO	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
	0	2	0	0	0	0	0	S	S	S	S	S	S	S	S	S
	1		3	4	5	6	7	0	0	0	0	0	0	0	0	0
								1	2	3	4	5	6	7	8	9
CO1	3	-	-	-	-	-	-	2	-	-	-	-	-	-	-	-
CO2	3	-	-	-	-	-	-	2	-	-	-	-	-	-	-	-
CO3	3	-	-	-	-	-	-	3	-	-	-	-	-	-	-	-
CO4	3	-	-	-	-	-	-	3	-	-	-	-	-	-	-	-

Correlation Levels:

a- (NA),

b-1 (Mild),

c-2 (Moderate)

d-3 (High)

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal	Assignment	Project	End Semester
	Exam		Evaluation	Examinations
CO 1			\checkmark	\checkmark
CO 2			\checkmark	\checkmark
CO 3			\checkmark	\checkmark
CO 4	√	V	\checkmark	\checkmark

Mar Ivanios College (Autonomous)

Discipline	Botany									
Course Code	MIUK3DSCBOT	201.1								
Course Title	PLANT PATHOLOGY AND DEFENSE MECHANISM									
Type of	DSC B/C	DSC B/C								
Course										
Semester	III	III								
Academic	200-249	200-249								
Level										
Course	Credit	Lecture	Tutorial	Practical	Total					
Details		per week	per week	per week	Hours/Week					
	4	3 hours	-	2 hours	5					
Pre-	Awareness about	diseases in j	plants							
requisites										
Course	This course pro-	vides an ir	-depth exp	loration of	plant-pathogen					
Summary	interactions, defe	ence mecha	anisms and	pathogen	virulence, and					
	advanced techniq	ues in disea	se diagnosis	and manager	ment.					

Module	Unit	Content	Hrs						
Ι		Introduction to plant pathology							
	1	Importance, definition and concepts of plant pathology, History and growth of plant pathology, biotic and abiotic causes of plant diseases.							
	2	Growth, reproduction, survival and dispersal of important plant pathogens, role of environment and host nutrition on							

		plant diseases.							
	3	Host-Pathogen interaction, recognition, concept and infection,							
		symptomology, disease development- role of enzymes, toxins,							
		growth, defense strategies, phenolic, phytoalexins, Pr							
		proteins, Elicitors, Altered plant metabolism as affected by							
		plant pathogen							
	4	Prevention and control of plant diseases- Role of quarantine.							
II		Ecology of Plant pathogens	15						
	5.	Soil as an environment for plant pathogens, nature and							
		importance of rhizosphere and rhizoplane, host exudates, soil							
		and root inhabiting fungi, bacteria, actinomycete							
	6	History of plant viruses, shape, size, composition, structure							
		and physical properties of viruses. Symptomatology of							
		important plant viral diseases, transmission, virus vector							
		relationship. Mechanism of resistance and management of							
		plant viruses.							
	7	History and introduction to phyto-pathogenic bacteria							
		and other fastidious prokaryotes. Importance of phyto-							
		pathogenic bacteria							
	8	Fungal flora that causes plant diseases.							
	9	Activity:- study some common plant diseases caused by							
		bacteria, virus, fungus, their symptoms and control measures.							
III		Disease resistance in plants	5						
	10	Introduction and historical development, dynamics of							
		pathogenicity, process of infection, variability in plant							
		pathogens, gene centers as sources of resistance.							
	11	Disease escapes, disease tolerance, disease resistance, types							
		of resistance, identification of physiological races of							
		pathogens, disease progression in relation to resistance,							
		stabilizing selection pressure in plant pathogens.							
	12	Host defense system, morphological and anatomical							
	12	Host defense system, morphological and anatomical							

		resistance, preformed chemicals in host defense, post							
		inflectional chemicals in host defense, phytoalexins,							
		hypersensitivity and its mechanisms.							
	13	Gene-for-gene concept, protein-for-protein and immunization							
		basis, management of resistance genes. Strategies for gene							
		deployment.							
IV		Post harvest diseases	10						
	14	Concept of post harvest diseases, definitions, importance with							
		reference to environment and health.							
	15 Types of post harvest problems both by biotic and abiotic								
	10	causes.							
	16	Integrated approach in controlling diseases and improving the							
		shelf life of produce with special reference to							
		mycotoxicogenic fungi, knowledge of Codex Alimentarious							
	17	Factors governing post harvest problems both as biotic and							
		abiotic, role of physical environment, agro-ecocystem leading							
		to quiescent infection, operational mechanisms and cultural							
		practices in perpetuation of pathogens, pathogens and							
		antagonist and their relationship, role of bio-control agents							
		and chemicals in controlling post-harvest diseases.							
V		Biological control of plant diseases	15						
	18	Concept of biological control, definitions, importance,							
		principles of plant disease management with bioagents,							
		history of biological control, merits and demerits of biological							
		control.							
	19	Types of biological interactions, competition,							
		mycoparasitism, exploitation for hypovirulence, rhizosphere							
		colonization, competitive saprophytic ability, antibiosis,							
		induced resistance, mycorrhizal associations, operational							
		mechanisms and its relevance in biological control							
	20	Preparation of biopesticides, Commercial production of							

antagonists, their delivery systems, application and
monitoring, biological control in IDM, IPM and organic
farming system, biopesticides available in market. Quality
control system of biocontrol agents.

Practicals (30 Hrs)

1. Identification of plant diseases by examining symptomatic plant samples and herbarium specimens.

- 2. Preparation of fungicides mentioned in the syllabus.
- 3. Evaluate different disease management strategies through field or greenhouse trials.

4. Test the efficacy of chemical, biological, and cultural control methods on disease incidence and severity.

References:

- **1.** Mehrotra R S and Ashok Aggarwal (2007). Plant Pathology, third edition, Mc Graw Hill Education.
- 2. Rai J P and Alok K Singh (2014). Plant diseases: Identification and management.
- 3. Gail Schumaan (1991)Plant diseases: Their Biology and Social Impact.
- 4. Agrios, G.N. (1997) Plant Pathology, 4th edition, Academic Press, U.K.
- 5. Sharma, P.D. (2011). Plant Pathology, Rastogi Publication, Meerut, India.

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addresse
			d
CO-1	Students will gain knowledge of the biology, morphology, physiology, and life cycles of common plant pathogens, including fungi, bacteria, viruses, nematodes, and parasitic plants.	U	PSO- 1
CO-2	Students able to identify causal organisms of plant diseases and their mechanisms of pathogenesis.	U,E	PSO- 2

CO-3	Students will learn a range of disease management strategies, including cultural practices, chemical treatments, biological control agents, host resistance, and integrated pest management (IPM) approaches, and understand their application in	U	PSO- 5
	agricultural systems.		
CO-4	Students will analyze the impact of plant diseases on agricultural productivity, food security and ecosystem health, and evaluate strategies for mitigating disease impacts.	An, E	PSO- 9

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: PLANT PATHOLOGY AND DEFENSE MECHANISM

Credits: 2:1:2 (Lecture:Tutorial:Practical)

CO	СО	PO	PS	Cognit	Knowl	Lecture
No.			0	ive	edge	(L)/Tutorial
				Level	Catego	(T)
					ry	Practical
						(P)
1	Students will gain knowledge	1	1	U	F	L
	of the biology, morphology,					
	physiology, and life cycles of					
	common plant pathogens,					
	including fungi, bacteria,					
	viruses, nematodes, and					
	parasitic plants.					
2	Students able to Identify	1	2	U,E	F, C	Т /Р
	causal organisms of plant					
	diseases and their mechanisms					

	of pathogenesis.					
3		2	5	U	F,C	L
	management (IPM) approaches, and understand their application in agricultural systems.					
4	Students will analyze the impact of plant diseases on agricultural productivity, food security and ecosystem health, and evaluate strategies for mitigating disease impacts.	2	9	An, E	Р	L

F-Factual, C- Conceptual, P-Procedural, M-Metacog

Mapping of COs with PSOs and POs :

	Р	PO	Р	Р	Р	Р	Р	Р	P	P	Р	Р	P	Р	P	Р
	0	2	0	0	0	0	0	S	S	S	S	S	S	S	S	S
	1		3	4	5	6	7	0	0	0	0	0	0	0	0	0
								1	2	3	4	5	6	7	8	9
CO1	3	-	-	-	-	-	-	3	-	-	-	-	-	-	-	-
CO2	3	-	-	-	-	-	-	-	3	-	-	-	-	-	-	-
CO3	-	3	-	-	-	-	-	-	-	-	-	3	-	-	-	-
CO4	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-	
																3

Correlation Levels:

a. - (NA),

b. 1 (Mild),

- c. 2 (Moderate)
- d. 3 (High)

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal	Assignment	Project	End Semester
	Exam		Evaluation	Examinations
CO 1	\checkmark	√	\checkmark	\checkmark
CO 2		√		\checkmark
CO 3		√		
CO 4		√	\checkmark	\checkmark

Mar Ivanios College (Autonomous)

Discipline	BOTANY									
Course Code	MIUK3DSCBOT	202.1								
Course Title	BIODIVERSITY	CONS	ERVATIO	N AND	DISASTER					
	MANAGEMEN'	Г								
Type of	DSC B/C									
Course										
Semester	III									
Academic	200-249									
Level										
Course	Credit	Lecture	Tutorial	Practical	Total					
Details		per week	per week	per week	Hours/Week					
	4	4 3 hours - 2 hours 5								
Pre-	Curiosity to know	Curiosity to know the management practices in conservation and								
requisites	during disaster	during disaster								
Course	The course aims t	The course aims to foster an appreciation for the beauty and value of								
Summary	the natural worl	the natural world and inspire students to become stewards of								
	biodiversity in th	biodiversity in their personal and professional lives. Students learn								
	methods for asses	methods for assessing and mitigating risks associated with different								
	types of disasters	s. The cour	se covers the	he strategies	for preparing					
	individuals, comm	nunities, and	d organizatio	ons to effectiv	vely respond to					
	disasters.									

Module	Unit	Content	Hrs
I		Biodiversity	10

	1		
	1	Importance of Biodiversity, levels of biodiversity- species,	
		genetic and ecosystem diversity, threats to biodiversity-	
		habitat loss and fragmentation, exotic species, Man and wild	
		life conflict, overexploitation, IUCN categories of threaten	
		species	
	2	IUCN, Red data Book; Extinct and Threatened species-	
		endangered	
		Rare; Endangered and endemic plant species of India	
	3	Ramsar sites, Terrestrial and marine hotspots of biodiversity;	
		hotspots of biodiversity in India.	
II		Conservation of biodiversity	7
	4	Principles and importance of conservation biology; In- situ	
		conservation of biodiversity sanctuaries, national parks,	
		sacred groves , biosphere reserves	
	5.	Ex-situ conservation of biodiversity: Principles and practices,	1
		field gene banks, seed banks and cryopreservation	
	6	Approaches for biodiversity conservation: tropical forests,	1
		wetlands and aquatic ecosystems	
	7	Activity – Visit to a research institution and submit a report	
III		Conservation Practices in India and World	6
	8	Biodiversity convention. International and national efforts to	
		conserve biodiversity. Socio-cultural aspects of biodiversity.	
		Aichi Biodiversity targets, Biotechnological needs for	
		biodiversity conservation. Traditional knowledge and	
		biodiversity	
		Conservation	
	9	Organizations involved in conservation IUCN, WWF, UNEP,	
		UNESCO,.	
		General account on activities of DBT, BSI, NBPGR,	
		Biodiversity register.	
	10	Stockholm Conference, Montreal Protocol, CITES,	

		Biodiversity policy and legislation.	
IV		Disaster Management	7
	11	Introduction, Definition and terminologies; scope and concept of disaster management.	
	12	Disaster- Types of Disaster- Natural & anthropogenic	
	13	Natural and Environmental disasters-a brief description of the following disasters- Earth quake, flood, coastal disasters, landslides, tsunami (role of mangroves in controlling tsunami disaster), cyclone, dam collapse, nuclear disaster, chemical, disaster, biological disaster	
	14	Disaster management – four phases – mitigation, preparedness, responses, recovery. Emergency procedures and warning systems, application of GIS	
	15	Activity- Visit to an affected area	
V		Mitigation efforts	15
	16	UN draft resolution on Strengthening of Coordination of Humanitarian Emergency Assistance	
	17	Role and responsibilities of various agencies and mitigation strategies.	
	18	Regulation/guidelines for disaster tolerance building structure	
	19	Rehabilitation Work, Constraints in Monitoring and Evaluation	
	20	Education and Training in Health Management of Disasters	

Practicals (30hrs)

- 1. Field Survey in college campus for studying plant species diversity
- 2. Ex- situ conservation of plant species using in vitro technique
- 3. Microproagation of an endangered plant species
- 4. Green pod (embryo culture) culture of orchid

5. Prepare a report on case studies of natural hazards in India e.g Tsunami, Himalayan

Earthquakes and tropical cyclones

Reference

- 1. Chandel, K.P.S., Shukla, G. And Sharma, N. (1996). Biodiversity in Medicinal and Aromatic
- Plants in India Conservation and Utilization, National Bureau of Plant Genetic Resources, New Delhi.
- Council of Scientific and Industrial Research (1986). The Useful Plants of India Publication and Information Directorate, CSIR, New Delhi.
- Nair, M.N.B. et. al. (Eds.) (1998). Sustainable Management of Non-wood Forest Products.
- Faculty of Forestry, University Putra. Malaysia. 434 004 PM Serdong, Selangor, Malaysia.
- Soule, M.E. (ed.) (1986). Conservation Biology. The Science of Scarcity and Diversity. Sinaur.Associates, Inc., Sunderland, Massachusetts.
- 7. Singh, J.S., Singh, S.P. and Gupta, S.R. 2006. Ecology, Environment and Resource Conservation, Anamaya Publishers, New Delhi.
- 8. Bolt, B.A. Earthquakes, W. H. Freeman and Company, New York. 1988
- Carter, N,W. Disaster Management: A Disaster Manager's Hand Book, Asian Development Bank, Manila. 1992
- Gautam Ashutosh. Earthquake: A Natural Disaster, Ashok Publishing House, New Delhi. 1994
- Sahni, P.and Malagola M. (Eds.).Disaster Risk Reduction in South Asia, Prentice-Hall of India, New Delhi. 2003.
- 12. Sharma, V.K. (Ed.). Disaster Management, IIPA, New Delhi. 1995.
- Singh T. Disaster management Approaches and Strategies, Akansha Publishing House, New Delhi. 2006
- 14. Sinha, D. K. Towards Basics of Natural Disaster Reduction, Research Book Centre, New Delhi. 2006
- Smith, K. Environmental Health, Assessing Risk and Reduction Disaster, 3rd Edition, Routledge, London. 2001

Course Outcomes

No.	Upon completion of the course the graduate will	Cogniti	PSO
	be able to	ve	addresse
		Level	d
CO-1	Understand the concept of biodiversity and its	U	PSO-1
	importance in maintaining ecosystem stability.		
CO-2	Analyze the role of biodiversity in providing	An	PSO-1,4
	ecosystem services essential for human well-being.		
CO-3	Gain an understanding of the concepts and principles	R,U	PSO-5
	of disaster management, -mitigation, preparedness,		
	response, and recovery. Role of risk assessment and		
	early warning systems in disaster prevention and		
	mitigation.		
CO-4	Analyze the various types of natural and human-	U, An	PSO-6
	induced disasters, including earthquakes, floods,		
	hurricanes and industrial accident.		

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: BIODIVERSITY CONSERVATION AND DISASTER MANAGEMENT

Credits:2:1:2 (Lecture:Tutorial:Practical)

CO No.	со	ΡΟ	PSO	Cognitiv e Level	Knowled ge Category	Lecture (L) /Tutorial (T)/ Practical (P)
CO-1	Understandtheconceptofbiodiversityanditsimportanceinmaintainingecosystemstability.	1	1	U	F, C	T /P
CO-2	Analyze the role of biodiversity in providing ecosystem services essential for human well-being.	1	1,4	An	F,C	L

CO-3	Gain an understanding of the concepts and principles of disaster management, including mitigation, preparedness, response, and recovery. Explore the role of risk assessment and early warning systems in disaster prevention and mitigation.	5	5	R,U	Р	L
CO-4	Analyze the various types of natural and human-induced disasters, including earthquakes, floods, hurricanes and industrial accident.	5	6	U, An	Р	L/T

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	Р	?O	Р	P	Р	Р	Р	P	Р	Р	P	Р	P	Р	Р	Р
	0	2	0	0	0	0	0	S	S	S	S	S	S	S	S	S
	1		3	4	5	6	7	0	0	0	0	0	0	0	0	0
								1	2	3	4	5	6	7	8	9
CO1	3	-	-	-	-	-	-	3	-	-	-	-	-	-	-	-
CO2	3	-	-	-	-	-	-		-	-	3	-	-	-	-	-
								3								
CO3	-	-	-	-	2	-	-	-	-	-	-	3	-	-	-	-
CO4	-	-	-	-	2	-	-	-	-	-	-	-	3	-	-	-
																3

Correlation Levels:

- a. (NA),
- b. 1 (Mild),
- c. 2 (Moderate)
- d. 3 (High)

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	V	√	\checkmark	✓
CO 2		V		\checkmark
CO 3		V		
CO 4		V	\checkmark	√

Mar Ivanios College (Autonomous)

Discipline	BOTANY							
Course Code	MIUK3DSEBOT 203.1							
Course Title	MICROTECHN	MICROTECHNIQUE AND BIOPHYSICS						
Type of	DSE							
Course								
Semester	III							
Academic	200-249							
Level								
Course	Credit	Lecture	Tutorial	Practical	Total			
Details		per week	per week	per week	Hours/Week			
	4	3 hours	-	2 hours	5			
Pre-	Basic knowledge	Basic knowledge in instrumentation						
requisites								
Course	Overview of the field, its significance in understanding living							
Summary	systems. Applica	tion of bio	physical pri	inciples to u	inderstand the			
	molecular and cel	lular basis o	of plant syste	em.				

Module	Unit	Content	Hrs
Ι		Introduction to microtechnique	4
	1	Microscopic techniques - simple and compound microscope-	
		phase contrast; dark field illumination and electron	
		microscopes (SEM and TEM).	
II		Specimen preparation	15
	2.	Killing and fixation agents - Carnoy's formula, Farmers	
		formula, F.A.A	
	3.	Dehydration – reagents.	

4. Sectioning - hand and microtome- rotary and sledge. 5. Stains and staining techniques - double staining. General account; Stains: safranin, haematoxylin, acetocarmine. 6. Mounting media - D. P. X and Canada balsam. 7. Whole mounts - cytological methods: maceration, smear and squash preparation III Introduction to Biophysics 6 8. Solutions: representing concentrations: Molarity, Normality, Percentage and ppm. 6 9. Buffers -their functions in biological systems - Uses of buffers in biological research. 10. 10. Principles and applications of Colorimeter, Spectrophotometer (UV-Visible)- Principle, -Working and uses 5 IV Biophysical techniques 5 I1. Centrifugation: Principle, types of centrifuges, types of rotors (swinging bucket, fixed angle), Density gradient and Differential centrifugation. Applications 6 I2. Basic knowledge of the separation methods: - Chromatography (Column chromatography, paper chromatography and TLC), Electrophoresis (PAGE and AGE). 13. I3. Measurement of pH- pH meter 15 I4 Overview of microtechnique, historical perspective, 15		4	Castianing than down in terms and shall deal	
image: second		4.	Sectioning - hand and microtome- rotary and sledge.	
6.Mounting media - D. P. X and Canada balsam.7.Whole mounts - cytological methods: maceration, smear and squash preparationIIIIntroduction to Biophysics68.Solutions: representing concentrations: Molarity, Normality, Percentage and ppm.69.Buffers - their functions in biological systems - Uses of buffers in biological research.610.Principles and applications of Colorimeter, Spectrophotometer (UV-Visible)- Principle, -Working and uses5IVBiophysical techniques511.Centrifugation: Principle, types of centrifuges, types of rotors (swinging bucket, fixed angle), Density gradient and Differential centrifugation. Applications512.Basic knowledge of the separation methods: Chromatography and TLC), Electrophoresis (PAGE and AGE).13.Measurement of pH- pH meterVVYApplications15		5.	Stains and staining techniques - double staining. General	
Image: Note of the separation set of the separation methods: - Chromatography and TLC), Electrophoresis (PAGE and AGE).13.Measurement of pH- pH meter15Image: Set of the separation set of the separation set of the separation methods: - Chromatography and TLC), Electrophoresis (PAGE and AGE).15			account; Stains: safranin, haematoxylin, acetocarmine.	
IIIsquash preparation6IIIIntroduction to Biophysics68.Solutions: representing concentrations: Molarity, Normality, Percentage and ppm.89.Buffers - their functions in biological systems - Uses of buffers in biological research.910.Principles and applications of Colorimeter, Spectrophotometer (UV-Visible)- Principle, -Working and uses5IVBiophysical techniques511.Centrifugation: Principle, types of centrifuges, types of rotors (swinging bucket, fixed angle), Density gradient and Differential centrifugation. Applications512.Basic knowledge of the separation methods: - Chromatography and TLC), Electrophoresis (PAGE and AGE).13.Measurement of pH- pH meterVImage: state		6.	Mounting media - D. P. X and Canada balsam.]
III Introduction to Biophysics 6 8. Solutions: representing concentrations: Molarity, Normality, Percentage and ppm. 9. Buffers -their functions in biological systems - Uses of buffers in biological research. 10. Principles and applications of Colorimeter, Spectrophotometer (UV-Visible)- Principle, -Working and uses IV Biophysical techniques 5 I1. Centrifugation: Principle, types of centrifuges, types of rotors (swinging bucket, fixed angle), Density gradient and Differential centrifugation. Applications I2. Basic knowledge of the separation methods: - Chromatography (Column chromatography, paper chromatography and TLC), Electrophoresis (PAGE and AGE). I3. Measurement of pH- pH meter 15		7.	Whole mounts - cytological methods: maceration, smear and	1
8. Solutions: representing concentrations: Molarity, Normality, Percentage and ppm. 9. Buffers -their functions in biological systems - Uses of buffers in biological research. 10. Principles and applications of Colorimeter, Spectrophotometer (UV-Visible)- Principle, -Working and uses IV Biophysical techniques Solutions: Principle, types of centrifuges, types of rotors (swinging bucket, fixed angle), Density gradient and Differential centrifugation. Applications 12. Basic knowledge of the separation methods: - Chromatography and TLC), Electrophoresis (PAGE and AGE). 13. Measurement of pH- pH meter V Applications 13. Letter of pH- pH meter			squash preparation	
Percentage and ppm.9.Buffers -their functions in biological systems - Uses of buffers in biological research.10.Principles and applications of Colorimeter, Spectrophotometer (UV-Visible)- Principle, -Working and usesIVBiophysical techniques511.Centrifugation: Principle, types of centrifuges, types of rotors (swinging bucket, fixed angle), Density gradient and Differential centrifugation. Applications512.Basic knowledge of the separation methods: - Chromatography and TLC), Electrophoresis (PAGE and AGE).13.Measurement of pH- pH meterVApplications15	III		Introduction to Biophysics	6
9.Buffers -their functions in biological systems - Uses of buffers in biological research.10.Principles and applications of Colorimeter, Spectrophotometer (UV-Visible)- Principle, -Working and usesIVBiophysical techniquesIVBiophysical techniquesI1.Centrifugation: Principle, types of centrifuges, types of rotors (swinging bucket, fixed angle), Density gradient and Differential centrifugation. Applications12.Basic knowledge of the separation methods: - Chromatography and TLC), Electrophoresis (PAGE and AGE).I3.Measurement of pH- pH meterVApplicationsI1.		8.	Solutions: representing concentrations: Molarity, Normality,	
Image: Note of the separation methods:Image: No			Percentage and ppm.	
Image: Note of the separation methods: - Chromatography and TLC), Electrophoresis (PAGE and AGE).5Image: Note of the separation methods: - Chromatography and TLC), Electrophoresis (PAGE and AGE).13.15		9.	Buffers -their functions in biological systems - Uses of buffers	
IV Biophysical techniques 5 IV Eentrifugation: Principle, types of centrifuges, types of rotors (swinging bucket, fixed angle), Density gradient and Differential centrifugation. Applications 5 12. Basic knowledge of the separation methods: - Chromatography (Column chromatography, paper chromatography and TLC), Electrophoresis (PAGE and AGE). 4 13. Measurement of pH- pH meter 15			in biological research.	
IV Biophysical techniques 5 11. Centrifugation: Principle, types of centrifuges, types of rotors (swinging bucket, fixed angle), Density gradient and Differential centrifugation. Applications 14 12. Basic knowledge of the separation methods: - Chromatography (Column chromatography, paper chromatography and TLC), Electrophoresis (PAGE and AGE). 13. V Image: Note the separation method separatice separation method separation method separat		10.	Principles and applications of Colorimeter, Spectrophotometer	
11. Centrifugation: Principle, types of centrifuges, types of rotors (swinging bucket, fixed angle), Density gradient and Differential centrifugation. Applications 12. Basic knowledge of the separation methods: - Chromatography (Column chromatography, paper chromatography and TLC), Electrophoresis (PAGE and AGE). 13. Measurement of pH- pH meter			(UV-Visible)- Principle, -Working and uses	
V V Applications V Applications	IV		Biophysical techniques	5
V Differential centrifugation. Applications 12. Basic knowledge of the separation methods: - Chromatography (Column chromatography, paper chromatography and TLC), Electrophoresis (PAGE and AGE). 13. Measurement of pH- pH meter V V		11.	Centrifugation: Principle, types of centrifuges, types of rotors	
12. Basic knowledge of the separation methods: - Chromatography (Column chromatography, paper chromatography and TLC), Electrophoresis (PAGE and AGE). 13. Measurement of pH- pH meter V Y			(swinging bucket, fixed angle), Density gradient and	
V V V V			Differential centrifugation. Applications	
V Age V Applications		12.	Basic knowledge of the separation methods: -	
AGE). 13. Measurement of pH- pH meter V Applications			Chromatography (Column chromatography, paper	
13. Measurement of pH- pH meter V Applications			chromatography and TLC), Electrophoresis (PAGE and	
V Applications 15			AGE).	
		13.	Measurement of pH- pH meter	
14 Overview of microtechnique, historical perspective,	V		Applications	15
		14	Overview of microtechnique, historical perspective,	
importance in various fields.			importance in various fields.	
15 Micrometry, Camera lucida		15	Micrometry, Camera lucida	
16 Cryobiology–cryopreservation, freeze drying(lyophilisation)		16	Cryobiology-cryopreservation, freeze drying(lyophilisation)	
and its applications.			and its applications.	
17 Applications of Microtechnique- Medical diagnostics,		17	Applications of Microtechnique- Medical diagnostics,	1
Biomedical research, material science and Forensic science.			Biomedical research, material science and Forensic science.	
18 Applications of Biophysics- Biophysical methods in drug		18	Applications of Biophysics- Biophysical methods in drug	
discovery and development; medical diagnostic and imaging,				

emerging trends and future directions in biophysics research

Practicals: (30 hrs)

- Familiarize stains, fixatives and mounting media
- General awareness of Micro technique maceration, smears & squash
- Demonstration of microtome sectioning and hand sectioning
- Measurement of specimens using micrometer
- Photomicrography and Camera lucida drawings (Demonstration only).
- Preparation of solutions of known concentrations using pure samples and stock solutions.
- Separation of plant pigments by paper chromatography/TLC.
- Preparation of buffer.
- Measurement of pH.
- Construct the absorption spectrum of any sample

References

- 1. DonaldA.Johansen (1940) Plant Microtechnique- Mac Graw Hill Book company
- 2. Elizabeth Allman (2004). Mathematical Methods in Biology, Cambridge University Press India Pvt. Ltd
- 3. Gieryn T.F. (1999). Cultural Boundaries of Science, Univer. Chicago Press.
- 4. Newton RG (2000) The truth of Science, 2nd edition, Harward University Press
- 5. Pattabhi V & Gautham N (2011)Biophysics, Narosa publishers
- 6. Peter Grey (2018) Hand book of microtechnique-Mac Graw Hill Bookcompany
- 7. PrasadandPrasad(1972).OutlinesofBotanicalMicrotechnique,Emkaypublish,Delhi
- 8. Willard H. H., J. A. Dean, L. L. Merritt and F. A. Settle (2011) Instrumental
- methods of analysis, CBS Publishers and Distributors N. Delhi DonaldA.Johansen (1940) Plant Microtechnique- Mac Graw Hill Book company

Course Outcomes

Upon completion of the course the graduate	Cognitive	PSO
will be able to	Level	addresse
		d

CO-1	Apply knowledge of microtechnique to research projects or laboratory investigations, demonstrating the ability to design experiments, collect data and analysing the results.	Ар	PSO-1
CO-2	Gain a solid understanding of the fundamental principles of physics as they apply to biological systems	U	PSO-1,7
CO-3	Acquire practical skills in using experimental and biophysical techniques commonly employed in research,	A	PSO-1,6
CO-4	Students should learn to integrate concepts and methodologies from physics, chemistry, biology, and mathematics to address complex questions .	Ε	PSO-7

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: MICROTECHNIQUE AND BIOPHYSICS

Credits: 2:1:2 (Lecture:Tutorial:Practical)

CO	СО	Р	PSO	Cog	Knowledg	Lecture
No.		0		nitiv	e	(L)
				e	Category	/Tutorial
				Lev		(T)/
				el		Practical
						(P)
СО	Apply knowledge of	1	1	U	F	L
-1	microtechnique to research					
	projects or laboratory					
	investigations, demonstrating					
	the ability to design					
	experiments, collect data and					
	analysing the results.					
СО	Gain a solid understanding of	2,	1,7	U,	F, C	T /P
-2	the fundamental principles of			Ap		

	physics as they apply to					
	biological systems					
CO	Acquire practical skills in using	5,6	1,6	U	F,C	L
-3	experimental and biophysical					
	techniques commonly employed					
	in research,					
CO	Students should learn to	6	7	С	М	L/T
-4	integrate concepts and					
	methodologies from physics,					
	chemistry, biology, and					
	mathematics to address complex					
	questions .					

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	Р	?O	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
	0	2	0	0	0	0	0	S	S	S	S	S	S	S	S	S
	1		3	4	5	6	7	0	0	0	0	0	0	0	0	0
								1	2	3	4	5	6	7	8	9
CO1	3	-	-	-	-	-	-	3	-	-	-	-	-	-	-	-
CO2	-		-	-	-	-	-		-	-	-	-	-	3	-	-
		3						3								
CO3	-	-	-	-	2	3	-	3	-	-	-	-	3	-	-	-
CO4	-	-	-	-	-	3	-	-	-	-	-	-	-	2	-	-
																3

Correlation Levels:

- a. (NA),
- b. 1 (Mild),
- c. 2 (Moderate)
- d. 3 (High)

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal	Assignment	Project	End Semester
	Exam		Evaluation	Examinations
CO	\checkmark	\checkmark		\checkmark
1				
СО	\checkmark	\checkmark		\checkmark
2				
CO	\checkmark	\checkmark	\checkmark	\checkmark
3				
CO	\checkmark	\checkmark		\checkmark
4				

Mar Ivanios College (Autonomous)

Discipline	BOTANY							
Course Code	MIUK3VACBOT	MIUK3VACBOT 204.1						
Course Title	WASTE MANA	GEMENT						
Type of	VAC							
Course								
Semester	III							
Academic	200 - 249							
Level								
Course	Credit	Lecture	Tutorial	Practical	Total			
Details		per week	per week	per week	Hours/Week			
	3	3 hours	-	2 hours	5			
Pre-	Interest in waste of	disposal mae	chinery					
requisites								
Course	To learn various aspects of waste management. To learn recovery of							
Summary	products from wa	aste to com	post, integra	ited waste m	anagement. To			
	create clean and g	green enviro	nment.					

Module	Unit	Content	Hrs					
I		Waste Generation and Characterization						
	1	Classification of waste generation aspects, collection, storage,						
		transport and disposal of waste, waste processing techniques						
		and source reduction, product recovery and recycling. Waste						
		collection and Waste disposal.						
	2	Mechanical Treatment Material Recovery Facility, Recycling						
		and Recovery, Processing and Treatment of Waste.						
	3	Biological methods for waste processing: Composting, Bio						

		methanation, Biodiesel, Biohydrogen, Mechanical Biological Stabilization Processing and Treatment of waste.	
	4	Incineration, Residues and its utilization, co-combustion,	
		Pyrolysis, Gasification, Refuse Derived Fuel, solid recover	
		fuel. Technologies Under Development, Bio-fuels and bio-	
		chemicals, Bio CNG, Technologies for Smart Waste	
		Collection, use of SCADA systems for waste management,	
		technical options for Construction and Demolition Waste	
II		Management. Waste Processing Techniques	6
11			U
	5	Purpose of processing-Improving efficiency of SWM system,	
		Recovering material for reuse, Recovering conversion	
		products and energy.	
	6	Component separation- Air separation, Conventional chute	
		type,	
		Zigzag air classifier, Open inlet vibrator type, Magnetic	
		separation, screening	
	7	Drying and dewatering	
	8	Source reduction, Product recovery, recycling	
III		Composting	9
	9	Introduction, Objectives, Benefits of composting,	
		fermentation	
	10	Composting- Principles of composting- manual and	
		mechanized methods.	
	11	Types of Composting - Backyard composting, Other Methods	
		of Composting & Diversion – Grass cycling,	
		Vermicomposting, Food Digesters, Commercial Compost	
		Haulers.	
	12	Compost types, Compost feedstock, Compost starting mixes	
		Composting methods Compost maturity	
	13	Composts and soil ecosystem resilience, Organic matter	
		storage and transformation, Storage, transport and	

		transformation of nutrients, Soil structure, aggregate stability, water storage and transport							
		water storage and transport							
	14	Microbiology of the composting process:- What are							
		microorganisms? Where do the microorganisms in the							
		compost come from? Why do microorganisms do it? What							
		microorganisms need to be able to do all the work? How do							
		microorganisms do it?							
IV		Sustainable methods	9						
	15	Vermi composting							
	16	Aerobic composting							
	17	Activity- different types of sustainable composting							
V	R	Regulatory and legal Frame work for waste management	15						
	18	Introduction:-Overview of waste management in India,							
		importance of legal and regulatory frameworks, Difference							
		between Regulatory and Legal frameworks, Legal Landmarks							
		in the History of Waste management in India, Institutional							
		framework on solid waste management in India							
	19	Waste Management Laws in India, The Environmental							
		Protection Act, The Hazardous Wastes (Management,							
		Handling and Transboundary Movement) Rules, 2008, The							
		Plastic Waste (Management and Handling) Rules, 2011, Bio-							
		Medical Waste (Management and Handling) Rules, 1998, The							
		E- Waste (Management and Handling) Rules, 2011, The							
		Batteries (Management and Handling) Rules, 2001.							
	20	Solid waste management rules 2016, Regulatory and Legal							
		policy making in Waste Management							

Practicals (30 hrs)

- **1.** Project:-Group project will choose and analyse particular waste related topics to explore in depth. / Composting.
- 2. Conduct awareness programs, poster presentations campaigns etc .

Reference

- Tchobaanoglous, G., Theisen, H., and Samuel A Vigil, Integrated Solid Waste Management, McGraw-Hill Publishers, 1993.
- 2. Bilitewski B., Hard He G., Marek K., Weissbach A., and Boeddicker H., Waste Management, Springer, 1994.
- **3.** White, F. R., Franke P. R., & Hindle M., Integrated solid waste management: a life cycle inventory. McDougall,P. John Wiley & Sons. 2001
- **4.** Nicholas, P., & Cheremisinoff, P. D., Handbook of solid waste management and waste minimization technologies, Imprint of Elsevier Science. 2005

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addresse d
CO-1	Identify the physical and chemical composition of wastes	U	1
CO-2	Analyze the functional elements for solid waste management	An,E	2,5,7,8
CO-3	Analyze the functional elements for liquid waste management.	AP,An	2,5,7,8
CO-4	To Understand the effluent treatment Plant and its disposal	С	6

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: WASTE MANAGEMENT

Credits: 2:0:2 (Lecture:Tutorial:Practical)

CO	СО	РО	PS	Cognitiv	Knowledge	Lecture
No.			0	e	Category	(L)
				Level		/Tutorial
						(T)/
						Practical
						(P)
CO-1	Identify the physical and	1	1	U	F,C	L
	chemical composition of					

	wastes					
CO-2	Analyze the functional	3	2,5	An,E	С	L
	elements for solid waste		,7,			
	management		8			
CO-3	Analyze the functional	3	2,5	AP,An	С	L
	elements for liquid waste		,7,			
	management.		8			
CO-4	To Understand the	5	6	С	Р	Р
	effluent treatment Plants					
	and its disposal					

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	P	PO	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
	0	2	0	0	0	0	0	S	S	S	S	S	S	S	S	S
	1		3	4	5	6	7	0	0	0	0	0	0	0	0	0
								1	2	3	4	5	6	7	8	9
CO1	3	-	-	-	-	-	-	3	-	-	-	-	-	-	-	-
CO2	-	-	3	-	-	-	-	-	1	-	-	2	-	2	3	-
CO3	-	-	3	-	-	-	-	-	1	-	-	2	-	2	3	-
CO4	-	-	-	-	2	-	-	-	-	-	-	-	3	-	-	-

Correlation Levels:

- a. (NA),
- b. 1 (Mild),
- c. 2 (Moderate)
- d. 3 (High)

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal	Assignment	Project	End Semester
	Exam		Evaluation	Examinations
CO	\checkmark	√		\checkmark
1				
CO	\checkmark	√	\checkmark	\checkmark
2				
СО	\checkmark	√	\checkmark	\checkmark
3				
СО		√	\checkmark	\checkmark
4				

Mapping of COs to Assessment Rubrics :

SEMESTER IV

Mar Ivanios College (Autonomous)

Discipline	BOTANY							
Course Code	MIUK4DSCBOT 25	50.1						
Course Title	ANGIOSPERM	MORPH	OLOGY	AND REP	RODUCTIVE			
	BOTANY							
Type of	DSC							
Course								
Semester	IV							
Academic	250-299							
Level								
Course	Credit	Lecture	Tutorial	Practical	Total			
Details		per week	per week	per week	Hours/Week			
	4	3 hours	-	2 hours	5			
Pre-	Knowledge abou	t flower and	its parts					
requisites								
Course	This course helps	to study th	e reproducti	ve processes	and structures			
Summary	of plants. It enc	ompasses v	various aspe	ects of plant	reproduction,			
	including the fo	ormation o	f gametes,	pollination	mechanisms,			
	fertilization, seed	developme	nt, and dispe	rsal.				

Module	Unit	Content	Hrs						
Ι		Glossary of Morphology							
	1	Plant habit							
	2	Root system- modifications with examples (-Storage, aerial,							

		pneumatophores, buttress)								
	3	Stem- Habit, modification - Acaulescent, Caulescent,								
		Cespitose Prostrate, Repent, Decumbent, Arborescent,								
		Suffrutescent (Definition with examples only)								
	4	Leaves - Leaf base, leaf lamina, and petiole								
	5	Activity-								
		a) Examine and compare the morphology of different types of								
		leaves, stem and fruits.								
		b) Visit to JNTBGRI and document the plants.								
II		Flower	5							
	6	Flower as a modified shoot								
	7	Parts of flower- arrangements, relative position, numeric plan,								
		cohesion, adhesion, symmetry of flower, aestivation,								
		placentation types								
	8	Types of inflorescence								
	9	Activity- Collect, dry and preserve parts of flower showing								
		the various types of adhesion and cohesion and prepare								
		display cards								
	10	Technical description of flowers- floral diagram, floral								
		formula								
III		Fruit	5							
	11	Fruit types, albuminous and exalbuminous								
	12	Activity: Make digital presentation of fruits based on								
		botanical structure and origin								
IV	Repr	oductive Botany: Flower Anatomy and Development	15							
	13	Structure and development of Anthers and microspore.								
	14	Structure of Ovary, Megaspores- Types of Ovules								
	15	Structure of Embryo - Dicot- (development) and Monocot								
	16	Activity: Exploration of the diversity of anther morphology								
		in flowers (photographs / drawings)								
V		Fertilization Processes								
	17	Double fertilization, Barriers to fertilization								

18	Endosperm types (cellular, nuclear and helobial)
19	Embryo sacs – Types (Monosporic, Bisporic and tetrasporic)
20	Pollination and its mechanisms
21	Adaptations for pollination
22	Activity: Minor report on the co-evolutionary interactions
	between plants and pollinators on any particular plant of
	choice.

Practical (30 hrs)

- 1. Identify flowers, fruits and inflorescence. Collect the suitable plants from your campus.
- 2. Structure of anther and embryo

References:

- Gangulee, H.C., J.S. Das & C. Dutta. 1982. College Botany (5th Ed.) New Central Book Agency, Calcutta.
- 2. George, H.M. Lawrence. 1951. Introduction to Plant Taxonomy. Mac Millan comp. Ltd., New York.
- Simpson, M. G. 2006. Plant Systematics. Elsevier Academic Press, London 4. Ananta Rao T. Morphology of Angiosperms.
- Bhojwani SS, Dantu PK &Bhatnagar SP(2014)The embryology of Angiosperms, Vikas Publishing
- 5. Johri B M (2011) Embryology of Angiosperms, Springer
- Maheswari P (2011) An Introduction to the Embryology of Angiosperms, McGraw Hill, New York
- Pandey AK (2000) Introduction to Embryology of Angiosperms, CBS Publishers & Distributors
- Pandey S N and Chadha A (1997)– Plant Anatomy and Embryology, Vikas Publishing

Course Outcomes

No.	Upon completion of the course the graduate	Cognitiv	PSO
	will be able to	e	addressed
		Level	
CO-1	Identify and describe the structures involved in		1,4,5
	plant reproduction, including flowers,	U	
	reproductive organs etc		
CO-2	Mastery of the different mechanisms of	U, An	4,5
	pollination		
CO-3	Explain the process of fertilization in plants	R, U	1
CO-4	Familiarize with the types of fruits and	U	1
	understand the stages of seed development		

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: ANGIOSPERM MORPHOLOGY AND REPRODUCTIVE BOTANY

Credits:2:1:2 (Lecture:Tutorial:Practical)

CO	СО	PO	PSO	Cognitive	Knowledge	Lecture
No.				Level	Category	(L)
						/Tutorial
						(T)/
						Practical
						(P)
CO-1	Identify and	1	1,4,5		F, C	L/P
	describe the					
	structures					
	involved in plant					
	reproduction,			U		
	including					
	flowers,					
	reproductive					
	organs etc					

CO-2	Mastery of the different mechanisms of pollination	2,5	4,5	U, An	М	L/T
CO-3	Explaintheprocessoffertilizationinplants	5	1	R, U	Р	Т
CO-4	Familiarize with the types of fruits and understand the stages of seed development	1	1	U	С, Р	L/P

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs:

	Р	?O	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
	0	2	0	0	0	0	0	S	S	S	S	S	S	S	S	S
	1		3	4	5	6	7	0	0	0	0	0	0	0	0	0
								1	2	3	4	5	6	7	8	9
CO1	3	-	-	-	-	-	-	3	-	-	1	1	-	-	-	-
CO2	-		-	-	2	-	-	-	-	-	1	1	-	-	-	-
		3														
CO3	-	-	-	-	2	-	-	3	-	-	-	-	-	-	-	-
CO4	3	-	-	-	-	-	-	3	-	-	-	-	-	-	-	-

Correlation Levels:

a. - (NA),

- b. 1 (Mild),
- c. 2 (Moderate)
- d. 3 (High)

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics:

	Internal	Assignment	Project	End Semester
	Exam		Evaluation	Examinations
CO	\checkmark	√		\checkmark
1				
CO		√		√
2				
CO	\checkmark		\checkmark	√
3				
СО		√	\checkmark	√
4				
CO	\checkmark			√
5				

Mar Ivanios College (Autonomous)

Discipline	BOTANY				
Course Code	MIUK4DSCBOT 251.1				
Course Title	CELL AND EVOLUTIONARY BIOLOGY				
Type of	DSC				
Course					
Semester	IV				
Academic	250 - 299				
Level					
Course	Credit	Lecture	Tutorial	Practical	Total
Details		per week	per week	per week	Hours/Week
	4	3 hours	-	2 hours	5
Pre-	A good understanding of basics in cell and evolution are vitally				
requisites	important.				
Course	The course offers deeper understanding on cell and its organelles				
Summary	emphasising on chromatin and further offers insights into				
	evolutionary biology				

Module	Unit	Content	Hrs					
Ι		Fundamentals of Cell Organelles						
	1	History, Scope and Progress of cell						
	2	The cell: Cell as a unit of structure and function; Characteristics of prokaryotic and eukaryotic cells; Origin of eukaryotic cell (Endosymbiotic theory).						
	3	Structure and function of Cell wall, cell membrane,endoplasmicreticulum,Ribosomes,Lysosomes,Mitochondria, chloroplast and Nucleus.						

II	4 5 Str 6	Chemical composition of membranes; Membrane transport – Passive, active and facilitated transport, endocytosis and exocytosis. Activity: Examine the photographs and draw different cell organelles. Tucture and Organization of Nucleus and Nuclear Material Chromosome and its structure, eukaryotic chromosomes and	10
	0	its organization, Classification of chromosomes based on position and number of centromere, Chromatids and Chromatin- composition and structure, euchromatin and heterochromatin - Constitutive and Facultative heterochromatin, karyotype, Idiogram, Nucleoproteins –	
	7	histones, non-histones, nucleosomes. Types of chromosomes- Prokaryotic and eukaryotic chromosomes, autosomes and sex chromosomes.	
	8	Special Chromosomes- Giant chromosomes -Polytene and Lamp brush (structure and functions) and supernumerary chromosomes - B chromosomes.	
	9	Cell division and Cell cycle – Mitosis and Meiosis – Significance. Cell cycle, Regulation of cell cycle	
	10	Activity: Seminar on chromosomal aberrations	
III	11	Introduction to Evolutionary Biology Neo Darwinism, Modern synthetic theory.	6
	11	Evidences of evolution- Physical – Paleontological, Morphological and anatomical, Biological- Embryological, Biogeographical and Molecular Biology.	
	13	Adaptive radiations - Patterns of Evolution- Parallel, Convergence, Divergence, Progressive, Retrogressive.	0
IV	14	Agents of EvolutionIsolation - Geographical Isolation (Ecological, Habitat, Temporal, Behavioural, Mechanical or Chemical)	9

		Reproductive Isolation (Pre-zygotic and Post - zygotic)					
	15	Mutation - Transition mutation, Transversion mutation, Silent					
		Mutation, Missense Mutation, Nonsense Mutation, Frame					
		Shift Mutation					
	16	Migration and Genetic drift.					
	17	Speciation - Allopatric, Peripatric, Parapatric, Sympatric and					
		Artificial					
V		Evolutionary Ecology 1					
	18	Adaptation, Co- evolution, Endemic species, allele					
		frequencies, genotype frequencies, Predator -prey					
		relationship, Host - parasite interactions, Biological species					
		concept (Advantages and limitations), Mass extinction.					
	19	Hybridization and Evolution, Polyploidy and Evolution,					
		Anagenesis and Cladogenesis					
	20	Activity: Visit to Natural History Museum,					
		Thiruvananthapuram.					

Practicals: (30 hrs.)

- 1. Study of plant cell structure with the help of epidermal peel mount of Onion/*Rhoeo*.
- 2. Make acetocarmine squash preparation of onion root tip and identify different stages of Mitosis.
- 3. Calculate Mitotic Index of root tips prepared by squash preparation.

References:

- Aggarwal SK (2009) Foundation Course in Biology, 2nd Edition, AneBooks Pvt. Ltd
- 2. Cohn, N.S. (1964) Elements of Cytology. Brace and World Inc, NewDelhi
- Darnel, J.Lodish, Hand Baltimore, D. (1991) Cell and molecular biology. Lea and Fibiger, Washington
- 4. De Robertis, E.D.P and Robertis, E.M.P (1991) Cell and molecular biology, Scientific Americanooks.

- Hall, B. K. (2012). Evolutionary developmental biology. Springer Science & Business Media.
- Janet, I. & Wallace, M. (2017). KARP'S Cell and Molecular Biology. John Wiley & Sons, Inc.
- 7. Keller, E. F., & Lloyd, E. A. (Eds.). (1992). Keywords in evolutionary biology. Harvard University Press.
- Niklas, K. J. (1997). The evolutionary biology of plants. University of Chicago Press.
- 9. Roy S.C. and Kalyan Kumar De (1997) Cell biology. New central Books, Calcutta
- 10. Sober, E. (Ed.). (1994). Conceptual issues in evolutionary biology. Mit Press.
- 11. Swanson, C.P (1957) Cytology and Genetics. Englewood cliffs, NewYork
- 12. Taylor (2008) Biological Sciences. Cambridge University Press India Pvt. Ltd
- Verma & Agarwal (2004) Cell Biology, Genetics, Molecular Biology, Evolution & Ecology, S Chand & Co.

	O	
Course	Outcomes	

No.	Upon completion of the course the graduate	Cognitiv	PSO
	will be able to	e	addressed
		Level	
CO-1	Explain the structure of a cell and can distinguish	U, A	PSO-5,6
	the various cell organelles		
CO-2	Compare the structure of chromosomes and	U, An	PSO-1,5,6
	analyse various process about mitosis and meiosis.		
CO-3	Build creativity in their thought processes by	Ap, An,	PSO-5
	understanding the biological evolution on the	С	
	earth.		
CO-4	Cultivate a sense of curiosity and wonder about		PSO-1-9
	the diversity of plant science, inspiring a lifelong	R, U, E	
	pursuit of learning and exploration in related		
	fields.		

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: CELL AND EVOLUTIONARY BIOLOGY

CO No.	СО	P O	PSO	Cognitiv e Level	Kno wled ge Cate gory	Lecture (L) /Tutorial (T)/ Practical (P)
CO-1	Explain the structure of a cell and can distinguish the various cell organelles	1	5,6	U, A	F, C	L
CO-2	Comparethestructureofchromosomesandanalysevariousprocessaboutmitosisand meiosis.	1	1,5,6	U, An	F,P	L/P
CO-3	Build creativity in their thought processes by understanding the biological evolution on the earth.	1	5	Ap, An, C	С, М	Τ
CO-4	Cultivate a sense of curiosity and wonder about the diversity of plant science, inspiring a lifelong pursuit of learning and exploration in related fields.	1,5 ,6	1-9	R, U, E	Μ	L/T

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs:

	Р	PO	Р	Р	Р	Р	Р	Р	Р	P	Р	Р	Р	Р	Р	Р
	0	2	0	0	0	0	0	S	S	S	S	S	S	S	S	S
	1		3	4	5	6	7	0	0	0	0	0	0	0	0	0
								1	2	3	4	5	6	7	8	9
CO1	3	-	-	-	-	-	-	1	-	-	-	2	2	-	-	-
CO2	3	-	-	-	-	-	-		-	-	-	3	2	-	-	-

								3								
CO3	3	-	-	-	-	-	-	-	-	-	-	3	-	-	-	-
CO4	3	-	-	-	2	2	-	2	3	2	2	3	3	2	2	-
																3

Correlation Levels:

- a. (NA),
- b. 1 (Mild),
- c. 2 (Moderate)
- d. 3 (High)
- •

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics:

	Internal	Assignment	Project	End Semester
	Exam		Evaluation	Examinations
CO	\checkmark			\checkmark
1				
CO	\checkmark	\checkmark		\checkmark
2				
CO	\checkmark	\checkmark		
3				
CO		√	\checkmark	\checkmark
4				
CO			\checkmark	
5				

Discipline	BOTANY				
Course Code	MIUK4DSCBOT	252.1			
Course Title	MICROBIOLO	GY			
Type of	DSC M1				
Course					
Semester	IV				
Academic	250-299				
Level					
Course	Credit	Lecture	Tutorial	Practical	Total
Details		per week	per week	per week	Hours/Week
	4	3 hours	-	2 hours	5
Pre-	Basic knowledge	about life fo	orms		
requisites					
Course	This course pro	ovides a c	comprehensi	ve understa	nding of the
Summary	principles and	practices i	n microbic	ology. By	exploring the
	fascinating world	l of microo	organisms, s	students gain	insights into
	their diverse role	es in natur	e and socie	ety and deve	elop the skills
	needed to address	current and	future chall	enges in mic	robiology.

Module	Unit	Content	Hrs
Ι		Fundamentals of Microbiology	5
	1	Overview of microbiology; Historical perspective; Contributions of microbiologists; Biology of microorganisms, Microbial nomenclature and classification.	
	2	Microbial cell- structure and function- Prokaryotic and eukaryotic cell structure; Microbial nutrition, growth, factors	

		affecting microbial growth, methods for measuring microbial	
		growth, Determination of cell count by hemocytometry and	
		metabolism.	
	3	Strategies for microbial control and prevention:- physical	
	5	(e.g., heat, radiation), chemical (e.g., disinfectants,	
		antimicrobial agents), and biological (e.g., antibiotics,	
II		bacteriophages)	10
11	4	Microbial Diversity	10
	4	Bacteria: general characteristics, Morphological classification,	
		classification based on staining reaction; Types-	
		archaebacteria, eubacteria, wall-less forms -mycoplasma; Cell	
		structure; Reproduction-vegetative, asexual and	
		recombination (conjugation, transformation and transduction),	
		Economic importance of bacteria with reference to their role	
		in agriculture and industry (fermentation and medicine).	
	5	Virus-physiochemical and biological characteristics;	
		classification (Baltimore), Introduction to oncogenic viruses,	
		Concepts of oncogenes and proto-oncogenes Virus as causal	
		organisms of plant diseases.	
	6	General Properties of other viruses, viroids and prions ;	
		Filamentous DNA phages, Single stranded RNA phages,	
		Virus of Plants; HIV, Vaccinia and Simian virus of animals,	
		Insect virus, lytic and lysogenic cycle.	
III		Microbial Ecology	5
	7	Microbial interactions- Mutualism, commensalism,	
		parasitism, competition and ammensalism; Environmental	
		factors affecting microbial interactions.	
	8	Community dynamics- Succession, diversity and stability,	
		keystone species, spacial arrangement.	
IV		Environmental Microbiology	10
	9	Soil Microbiology- Soil microorganisms, the rhizosphere -	
		Distribution of microbes; Role of microbes in soil fertility,	
		Nitrogen fixation; Biofertilizers.	

	10	Aquatic microbiology- Microorganisms as indicators of water	
		quality: coliforms and faecal coliforms; role of microbes in	
		sewage and domestic waste water treatment systems (Brief	
		account only).	
	11	Food and Dairy microbiology - Food and microorganisms, Food spoilage and food poisoning, Microorganisms in milk, food preservation methods - physical methods; chemical methods, antibiotics and bacteriocins.	
	12	Microbes in/on human body (Microbiomics) & animal (ruminants) body, Microbial succession in decomposition of plant organic matter,	
V		Industrial Microbiology	15
	13	Scope of microbes in industry and environment; institutes of	
		microbial research; Role of microorganisms in fermentation,	
		Economic importance of viruses with reference to vaccine	
		production, role in research, medicine and diagnostics, Use of	
		viral vectors in cloning and expression, Gene therapy and	
		Phage display	
	14	Probiotics: Health benefits, types of microorganisms used,	
		probiotic foods available in market.	
	15	Microbial production of industrial products -enzyme	
		(amylase); organic acid (citric acid); alcohol (ethanol);	
		antibiotic (penicillin)	
	16	Bioreactors- Components of a typical bioreactor, Types of	
		bioreactors; Fermenters - fermentation processes- Solid state	
		and liquid state (stationary and submerged) fermentations;	
		Batch and continuous Fermentations.	

Practicals (30hrs)

- 1. Electron micrographs/Photographs of viruses T-Phage (Bacteriophage) and TMV; Lytic and Lysogenic Cycle.
- 2. Bacterial identification by using temporary or permanent slides. Electron micrographs of bacteria, binary fission, endospore, conjugation, Gram staining method

- **3.** Principles and functioning of instruments in microbiology laboratory -autoclave, laminar air flow, incubators and types of fermenters.
- 4. Isolation of microorganisms from water and soil Serial dilution method. Determination of BOD, COD, TDS and TOC of water samples (Industrial visit)
- 5. Determination of coliforms in water samples by using eosin methylene blue (EMB) medium
- 6. An industrial visit/ microbiology research lab visit.

Suggested readings:

- 1. Alain Durieux (2009). Applied Microbiology, Springer International Edition.
- 2. Pelzar, M.J. Jr., Chan E.C. S., Krieg, N.R. (2010). Microbiology: An application based approach. New Delhi, Delhi: McGraw Hill Education Pvt. Ltd., Delhi.
- 3. Baveja C P (2017). Text Book of Microbiology. Arya Publications
- Tortora, G.J., Funke, B.R., Case. C.L. (2007). Microbiology. San Francisco, SF: Pearson Benjamin Cummings, 9th edition
- Dubey R .C. & Maheswari D .K (2012). A text Book of Microbiology Chand & Co
- 6. Stanbury, P.F., Whitaker, A., Hall, S.J. (2016). Principles of Fermentation Technology. Amesterdam, NDL: Elsevier Publication
- 7. Gunasekharan G. (2007). Laboratory Manual of Microbiology New AgePub:
- Heritage. L. (2007). Introductory Microbiology. Cambridge University Press India Pvt Ltd
- Patel, A.H. (2008). Industrial Microbiology, Bangalore, India: McMillan India Limited
- 10. Schlegel (2008). General Microbiology. CambridgeUniversityPressIndiaPvtLtd
- 11. Mohapatra. P.K. (2008). Textbook of Environmental Microbiology New Delhi, Delhi.
- 12. Bertrand, Jean-Claude, Caumette, P.
- Lebaron, P, Matheron, R., Normand, P., Sime-Ngando, T. (2015). Environmental Microbiology: Fundamentals and Applications. Amesterdam, Netherlands, Springer
- Casida, J.R. (2016). Industrial Microbiology. New, Delhi, Delhi, New Age International Publishers

15. Tortora G.J., Funke B.R. and Case C.L. (2019). Microbiology an Introduction 13th Edition Pearson Education, Inc.

Course Outcomes

No.	Upon completion of the course the graduate	Cognitive	PSO
	will be able to	Level	addresse
			d
CO-1	Understand the historical development of	U	PSO-1
	microbiology and students able to identify causal		
	organisms of plant diseases and their mechanisms		
	of pathogenesis.		
CO-2	Critically evaluate current trends and emerging	E	PSO-4,6
	technologies in microbial biotechnology,		
	considering their potential impact on industry,		
	environment, and society.		
CO-3	Evaluate and explain the significance of soil	U, E	PSO- 6
	microbes in enhancing soil fertility, sewage and		
	domestic wastewater treatment systems, including		
	biological processes involved in wastewater		
	remediation.		
CO-4	Critically evaluate emerging trends and	Е	PSO-4,5
	advancements in soil, aquatic, and food		
	microbiology, considering their implications for		
	environmental sustainability and public health.		

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: MICROBIOLOGY

Credits: 2:1:2 (Lecture:Tutorial:Practical)

CO	СО	PO	PS	Cogniti	Knowled	Lecture	
No.			0	ve	ge	(L)/Tutori	
				Level	Categor	al (T)/	
					У	Practical	

						(P)
1	Understand the historical development of microbiology and students able to identify causal organisms of plant diseases and their mechanisms of pathogenesis.	1	1	U	F, C	L/P
2	Critically evaluate current trends and emerging technologies in microbial biotechnology, considering their potential impact on industry, environment, and society.	1	4,6	E	Р	Τ
3	Evaluate and explain the significance of soil microbes in enhancing soil fertility, sewage and domestic wastewater treatment systems, including biological processes involved in wastewater remediation.	1	5,6	U, E	P, C	L/P
4	Critically evaluate emerging trends and advancements in soil, aquatic, and food microbiology, considering their implications for environmental sustainability and public health.	1	4,5	Ε	F, P	L

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	Р	?O	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
	0	2	0	0	0	0	0	S	S	S	S	S	S	S	S	S
	1		3	4	5	6	7	0	0	0	0	0	0	0	0	0
								1	2	3	4	5	6	7	8	9
CO1	3	-	-	-	-	-	-	3	-	-	-	-	-	-	-	-
CO2	3	-	-	-	-	-	-	-	-	-	3	-	2	-	-	-
CO3	3	-	-	-	-	-	-	-	-	-	-	3	2	-	-	-
CO4	3	-	-	-	-	-	-	-	-	-	3	3	-	-	-	\

Correlation Levels:

- a. (NA),
- b. 1 (Mild),
- c. 2 (Moderate)
- d. 3 (High)

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal	Assignment	Project	End Semester
	Exam		Evaluation	Examinations
CO	\checkmark	√		\checkmark
1				
CO		√	\checkmark	\checkmark
2				
CO	\checkmark		\checkmark	\checkmark
3				
CO		√		\checkmark
4				

Discipline	BOTANY												
Course Code	MIUK4DSCBOT 25	53.1											
Course Title	РНУТОСНЕМІ	STRY											
Type of	DSC												
Course													
Semester	IV												
Academic	250- 299												
Level													
Course	Credit	Lecture	Tutorial	Practical	Total								
Details		per week	per week	per week	Hours/Week								
	4	3 hours	-	2 hours	5								
Pre-	Knowledge about	plant secon	dary metabo	olites									
requisites													
Course	Students underst	tands the	basic princ	ciples of p	hytochemistry,								
Summary	including the clas	ssification of	of plant com	pounds, thei	r biosynthesis,								
	and their uses. S	tudents exp	olore the ch	emical diver	sity of natural								
	products derived	from plant	s, including	their chemi	ical structures,								
	properties, and so	ources. Stud	lents study a	about the me	edicinal plants,								
	including their	identifica	tion, culti	vation, har	vesting, and								
	pharmacological j	properties.											

Module	Unit	Content	Hrs				
I		Introduction and scope of phytochemistry	5				
	1.	Introduction to phytochemistry					
	2.	Basics of phytochemistry					
	3.	Sources of drugs from plants					

	4.	Application of phytochemistry										
	5	Quality control and analysis of phytochemicals	1									
II		Primary metabolites	7									
	6.	Molecules and life										
	7.	Carbohydrates - Classification, occurrence, structure and										
		functions of										
		monosaccharides (glucose and fructose), oligosaccharides										
		(sucrose and maltose), polysaccharides (starch and cellulose),										
		glycosidic bonds – Enzymatic hydrolysis of glycosidic bonds										
		– amylases and invertases.										
	8.	Amino acids- classification based on polarity, structure -	1									
		Amphoteric property of Amino acids										
	9.	Peptide formation–Aminoacid metabolism–reductive										
		amination and transamination										
	10.	Proteins – Structure, classification, properties and function;										
		Role of bonds in stabilizing protein structure - hydrolysis of										
		proteins										
III		Secondary Metabolites	8									
	11.	Introduction to secondary metabolites: Definition,										
		classification, properties and test for identification of										
		Alkaloids, Glycosides,										
		Flavonoids, Tannins, Volatile oil and Resins										
	12.	Cultivation of medicinal plants and factors influencing										
		cultivation of medicinal plants.										
	13.	Activity – Preparation of herbarium for five medicinal plants										
IV		Extraction and isolation of Phytoconstituents	10									
	14.	Different methods of extraction										
	15.	Role of solvents for extraction procedure										
	16.	Preliminary phytochemical screening										
	17. Fractionation of phytochemicals											
	17.	Fractionation of phytochemicals										
V	17.	Analytical Techniques	15									

18.	Chromatography and Electrophoresis in isolation	
19.	Purification and identification of crude drugs	
20.	Bioactivity of phytochemicals	

Practicals (30 hrs)

- 1. Qualitative analysis of carbohydrate
- 2. Identification tests for Proteins
- 3. Quantitative analysis of reducing sugars
- 4. Preliminary phytochemical screening
- 5. Collection and identification of medicinal plants
- 6. Qualitative analysis of primary and secondary metabolites
- 7. Estimation of flavonoid
- 8. Separation of secondary metabolites by different methods
- 9. Cytotoxic effect of different samples

References:

1. Jain J L, Sanjay Jain and Nithin Jain (2016). Fundamentals of Biochemistry. S Chand and Co

2. Jain J. L. (2005). Fundamentals of Biochemistry 6 th Edition, S. Chand & Company.

3. Keith Wilson and John Walker (2008) Principles and techniques of Biochemistry and Molecular Biology, 6th Edition, Cambridge University Press, India Pvt. Ltd.

4. Lehninger (2012). Principles of Biochemistry 6th Edition, W H Freeman & Co.

5. Plummer D. T. (2006). An introduction to Plant Biochemistry 3rd Edition, Tata Mc GrawHill.

6. Saini, A. K., D'souza, M. R., Gireesh Babu, K., Singh, A., & Premalatha, S. J. (2024). *Textbook of Pharmacognosy and phytochemistry-I*. Shashwat Publication.

7. Shah, B. N. (2009). Textbook of pharmacognosy and phytochemistry. Elsevier India.

8. Raaman, N. (2006). Phytochemical techniques. New India Publishing.

9. Harborne, A. J. (1998). Phytochemical methods a guide to modern techniques of plant analysis. springer science & business media.

Course Outcomes

No.	Upon completion of the course the graduate will	Cognitive	PSO
	be able to	Level	addresse
			d
CO-	Students will gain a comprehensive understanding	U	PSO-1
1	of the chemical constituents present in plants,		
	including primary and secondary metabolites.		
CO-	Students will be able to demonstrate various	R,U	PSO-2
2	methods of isolating and extracting plant		
	compounds from different plant parts using		
	appropriate techniques.		
СО-	Able to describe the biological activities of plant	R,U, E	PSO-4,7
3	compounds, including their pharmacological		
	effects and potential therapeutic uses.		
CO-	Students will develop interdisciplinary research	U,Ap, An,	PSO-7
4	skills by integrating knowledge from chemistry,	Е	
	biology, pharmacology to address complex		
	questions in phytochemistry and natural product		
	research.		

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: PHYTOCHEMISTRY

Credits: 2:1:2 (Lecture:Tutorial:Practical)

CO	СО	Р	PS	Cognit	Kno	Lect
No.		0	0	ive	wled	ure
				Level	ge	(L)/
					Cate	Tuto
					gory	rial
						(T)
CO-	Students will gain a comprehensive	1	1	U	F	L
1	understanding of the chemical					
	constituents present in plants, including					

	primary and secondary metabolites.					
CO-	Students will be able to demonstrate	5	2	R,U	F,C,P	T/P
2	various methods of isolating and					
	extracting plant compounds from					
	different plant parts using appropriate					
	techniques.					
CO-	Able to describe the biological	1	4,7	R,U, E	Р	L/P
3	activities of plant compounds,					
	including their pharmacological effects					
	and potential therapeutic uses.					
CO-	Students will develop interdisciplinary	1	7	R, U, E	C,P	L/P
4	research skills by integrating					
	knowledge from chemistry, biology,					
	pharmacology to address complex					
	questions in phytochemistry and					
	natural product research.					

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	Р	PO	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
	0	2	0	0	0	0	0	S	S	S	S	S	S	S	S	S
	1		3	4	5	6	7	0	0	0	0	0	0	0	0	0
								1	2	3	4	5	6	7	8	9
CO1	3	-	-	-	-	-	-	3	-	-	-	-	-	-	-	-
CO2	-	-	-	-	3	-	-	-	2	-	-	-	-	-	-	-
CO3	3	-	-	-	-	-	-	-	-	-	3	-	-	3	-	-
CO4	3	-	-	-	-	-	-	-	-	-	-	-	-	3	-	-

Correlation Levels:

- a. (NA),
- b. 1 (Mild),
- c. 2 (Moderate)

- d. 3 (High)
- •

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	√	√	\checkmark	✓
CO 2		√		V
CO 3		V		√
CO 4	V	√	\checkmark	√
CO 5	\checkmark	√	\checkmark	✓

Discipline	BOTANY	BOTANY							
Course Code	MIUK4DSEBOT	MIUK4DSEBOT 254.1							
Course Title	ETHNOBOTAN	ETHNOBOTANY AND PHARMACOGNOSY.							
Type of	DSE								
Course									
Semester	IV								
Academic	250- 299								
Level									
Course	Credit	Lecture	Tutorial	Practical	Total				
Details		per week	per week	per week	Hours/Week				
	3	3 hours	-	2 hours	5				
Pre-	General awarenes	s about Eth	nobotany and	d pharmacog	nosy				
requisites									
Course	The goal of this	course is to	o introduce	students to t	the fascinating				
Summary	world of the rela	world of the relationship between people and plants. The course							
	offers a unique a	offers a unique and multidisciplinary approach that includes plant							
	structure and fund	ction. Plant	diversity an	d the uses of	f the plants by				
	people around the	world.							

Module	Unit	Content	Hrs						
I		Relevance of Ethnobotany 6							
	1	Introduction, relevance, scope and status. Classify							
		international, National and Reginaol (J.W.Harshberger,							
		E.K.Janakiammal, S.K.Jain, K.S.Manilal,V.V. Sivarajan							
		&P.Pushpangadan)- any two. Centres of ethnobotanical							
		studies in India, AICRPE, FRLHT and their contributions to							

		athrahatany of India					
	-	ethnobotany of India.					
	2	Study in a brief about Tribal/Folk communities of Kerala state					
		focussing on Anthropololgy, Customs and beliefs (Koraga,					
		Kurichiya, Adiyan, Paniya, Cholanaikan, Kadar, Kurumba,					
		Kuruman, Kani, Ulladan) .					
	3	Role of ethnomedicine and its scope in modern times.					
	4	Activity: Collection of information on traditional methods of					
		treatments using crude drugs, utilization practices. Collect					
		information about spiritual plant species.					
II		Fundamentals of Ethnobotany	8				
	5	Ethnobotany- 1. Concepts and scope, 2.The factors and					
		Endogenous regulations					
	6	Ethnic groups from ancient literature. Methods and techniques					
		used in Ethnobotany- Field visit to collect datas. Collect					
		information about culture. (Documentation- Audio, video,					
		Photographs, Interview, Questionnaire).					
	7	Impact of ethnobotany in herbal-medicine industry, land-use					
		development, agriculture, forestry, betterment of rural					
		livelihood and education. Biodiversity and conservation of					
		some useful medicinal plants. Plant used in ethno medicines					
		eg. Trichopus, Ocimum, Aegle, Phyllanthus neruri.					
III		Ethnopharmacognosy	9				
	8	Pharmocognosy definition, scope and applications in herbal					
		medicine. Methods of collection, process and storage of					
		medicinal and aromatic plants. the holistic concepts of drug					
		administration - description of Sapta padarthas in Dravya					
		guna.					
	9	Plants used by ethnic groups as food, medicines,					
		(ethnomedicine), beverages, fodder, fibre, resins, oils,					
		fragrances and other uses. NWFP-Non wood forest products,					
		animal products, minerals, artefacts and rituals used by tribal					
		and folk communities of Kerala.					
	10	Ethnobotany and ethnopharmacology as a tool to protect					

		interests of ethnic groups and rural development.	
	11	Activity:- Collect information about 15 plant drugs	
IV		Ethnobotany and Coservation	7
	12	Ethnobotany and conservation of plant resources, Importance	
		of ethnobotany in Environmental Conservation.	
	13	Sacred grooves	
	14	Ethnobotanical importance in folklore	
V		Importance of Pharmacognosy	15
	15	Relevance of pharmacognosy and the study of sources of	
		crude Systems of indigenous medicines and their availability,	
		natural medicinal resources in use.	
	16	Difference between herbal/ botanicals and pharmaceutical	
		medicine. Role of ethnopharmacology in drug development.	
	17	Activity: Production of new medicine or cosmetics and	
		submit.	

Practicals (30 Hrs)

- 1. Documentary preparation of ethnic groups in India.
- 2. Familiarize with at least 5 folk medicines and study the medicinal application.
- 3. Observe the plants of ethnobotanical importance in your area.
- 4. Visit to an Ayurveda college or Ayurvedic centre.

•

Reference :-

- 1. K. Jain. Glimpses of Ethnobotany. Oxford and IBH Publishing Company, New Delhi.
- 2. S.K. Jain, 1987. A Manual of Ethno botany. Scientific Publishers, Jodhpurcomes
- 3. Cotton C M (1996). Ethnobotany-Principles and Applications. John Wiley & Sons, Ltd. England.
- 4. T.E Walles. Text book of Pharmacognosy.
- 5. Rajiv K Sinha. Ethnobotany

No.Upon completion of the course the graduateCognitivePSO	
---	--

	will be able to	Level	addresse
			d
CO-1	Rescue and document Ethnobotanicals for	U	PSO- 1, 8
	sustainable use of plant resources		
CO-2	Understand the need for development of f safe and	R, E	PSO-4
	more rational use of herbal preparations		
CO-3	Application of plang drugs	An, Ap	PSO-6
CO-4	Conservation of Sacred grooves	Ap, C	PSO-8

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create-----

Name of the Course: Ethnobotany and Pharmacognosy

СО	СО	РО	PSO	Cognitive	Knowledge	Lecture
No.				Level	Category	(L)
						/Tutorial
						(T)/
						Practical
						(P)
CO-	Rescue and document	1,2	1,8	U	F, M	L
1	Ethnobotanicals for					
	sustainable use of plant					
	resources					
CO-	Understand the need for	1	4	R, E	С	T /P
2	development of safe and					
	more rational use of					
	herbal preparations					
CO-	Application of plant	5	6	An, Ap	С, Р	L/P
3	drugs					
CO-	Conservation of Sacred	3	8	Ap, C	P, M	L
4	grooves					

Credits: 2:1:2 (Lecture:Tutorial:Practical)

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	Р	PO	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
	0	2	0	0	0	0	0	S	S	S	S	S	S	S	S	S
	1		3	4	5	6	7	0	0	0	0	0	0	0	0	0
								1	2	3	4	5	6	7	8	9
CO1	3	3	-	-	-	-	-	3	-	-	-	-	-	-	3	-
CO2	3	-	-	-	-	-	-	-	-	-	3	-	-	-	-	-
CO3	-	-	-	-	2	-	-	-	-	-	-	-	3	-	-	-
CO4	-	-	3	-	-	-	-	-	-	-	-	-	-	-	3	-

Correlation Levels:

- a. (NA),
- b. 1 (Mild),
- c. 2 (Moderate)
- d. 3 (High)

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal	Assignment	Project	End	Semester
	Exam		Evaluation	Examinations	
CO 1	√			√	
CO 2		\checkmark	\checkmark	\checkmark	
CO 3	√		\checkmark	√	
CO 4	\checkmark	\checkmark		√	

Discipline	BOTANY	BOTANY									
Course Code	MIUK4SECBOT 255.1										
Course Title	MEDICINAL PI	MEDICINAL PLANT MERCHANDISING									
Type of	SEC	SEC									
Course											
Semester	IV										
Academic	250 - 299										
Level											
Course	Credit	Lecture	Tutorial	Practical	Total						
Details		per week	per week	per week	Hours/Week						
	3	3 hours	-	-	3						
Pre-	Interest in medici	nal plants a	nd commerc	ialization							
requisites											
Course	This course equ	iips you v	with the fo	oundational	knowledge of						
Summary	medicinal plan	ts, its j	processing	and requ	irements for						
	commercialization	n; essent	ial for	understandi	ng business						
	opportunities usin	ig medicinal	l plants.								

Module	Unit	Content	Hrs						
Ι		Get Acquainted With Medicinal Plants							
	1	Study and identification of the major medicinal plants in							
		Kerala with special reference to their Botanical description							
		morphology of the useful part and medicinal properties.							
		1. Akshoka (Walnut) 2. Amaravalli (Akasavalli) 3. Amra							
		(Ambazham) 4. Bimbi (Kova) 5. Damanaka (Nilampala) 6.							
		Himsra (Kakkathondi) 7. Musali (Musalli) 8. Neeli							

		(Neelayamari) 9. Sarja (Kuntirikkappayin)	
		10. Vrikshamla (Punampuli)	
II		Medicinal Plant Cultivation And Processing	10
	2	Harvesting and Collection: Gathering of medicinal plants at	
		the appropriate stage of growth to ensure the highest	
		concentration of active compounds. Factors such as season,	
		time of day, and plant part (leaves, roots, flowers, etc.)	
	3	Drying and Storage: Proper drying techniques are essential to	
		preserve the potency and quality of medicinal plants. Sun	
		drying, shade drying, oven drying. Proper storage conditions,	
		including humidity and temperature control	
	4	Extraction Methods: Extraction methods- maceration,	
		percolation, Soxhlet extraction, steam distillation, and	
		supercritical fluid extraction. (Each method in terms of	
		efficiency, selectivity, and suitability for specific plant	
		materials and target compounds.)	
	5	Purification and Concentration: Chromatography (column	
		chromatography, high-performance liquid chromatography)	
		and filtration (Brief account)	
		Present scope of herbal drug industry	8
	6	Current Scenario of Herbal Industry	
III	7	Everything need to know about preservatives, shelf life	
	8	Stories and advice from a local grower, Stories of success	
		and interviews with the real life Plant entrepreneur	
	9	Popular Herbal Industry in India, Research and	
		manufacturing organization related to Medicinal Plants in	
		India .Industrial Perspective of Herbal Drug's	
		Commercialization and regulations.	
IV		Plant Excipients	5
	10	Significance of substances of natural orgin as excipients,	
		colourants, sweetners, binders, diluents, viscosity builders,	
		disintegrants, flavours and perfumes.	

	11	Formulation and Product Development: Excipients, stabilizers, and additives to enhance stability, bioavailability,	
		and patient compliance. (Brief account)	
V		MERCHANDISING	15
	12	Detailed study on cultivation practices- Post harvest	
		management and uses of any fifteen medicinal plants of high demand	
	13	Institutes, National and state agencies for promoting	
		cultivation of medicinal plants (CIMAP, NMPB and SMPBs).	
		Private Ayurvedic pharmaceutical manufacturing companies	
		in Kerala.	
	14	Regulatory and Legal Considerations- Overview of regulatory	
		frameworks governing the cultivation, processing, marketing,	
		and sale of medicinal plants Good and herbal products.	
	15	Agricultural and Collection Practices (GACP), Good	
		Manufacturing Practices (GMP), and labelling requirements.	
	16	Sustainability and Conservation: Sustainable harvesting	
		practices, conservation strategies, and ethical considerations	
		in the commercial exploitation of medicinal plants to ensure	
	17	long-term viability and ecological integrity	
	17	Research and Innovation: Innovations in medicinal plant	
		science, including novel plant-based therapies, biotechnological approaches, and opportunities for	
		biotechnological approaches, and opportunities for interdisciplinary collaboration.	

Practicals:-

- 1. Identify medicinal plants and match the botanical names of plants with their common names and medicinal uses.
- 2. Analyse and research medicinal plants in the market and prepare presentations
- 3. Practice cultivation and propagation of medicinal plants
- 4. Develop Value-Added Product

5. Investigate traditional uses of medicinal plants, folklore, and indigenous knowledge systems, emphasizing the importance of ethical sourcing and cultural sensitivity in merchandising practices.

Reference:

•

- Hao, D. C., Gu, X. J., & Xiao, P. G. (2015). Medicinal plants: chemistry, biology and omics. Woodhead Publishing.
- Tarentino, K. (2001). Medicinal Plants of the World, Volume 2. Chemical Constituents, Traditional and Modern Medicinal Uses. Ivan A. Ross. Totowa, NJ: Humana Press, 2001, 488 pp., \$99.50. ISBN 0-896-03877-7. Clinical Chemistry, 47(8), 1504-1505.
- 3. The Ayurvedic Pharmacopoeia of India, Govt. of India
 - Publication. Lohar D.R. (2008) Protocol for testing ayurvedic, siddha and unani medicines government of India,.
- 4. Willard H.H., Lynne L. Merritt (jr.), Frank Settle, John A. Dean (1988) Instrumental methods of analysis. CBS Publishers and Distributors Delhi.
- Beckett A.H. and Stenlake J.B. (1988) Practical Pharmaceutical Chemistry Part-II. Athlone Press
- 6. Ravishankar S. (2022) Pharmaceutical Analysis. Rx Publications
- 7. Kasture A.V. (2008) Pharmaceutical Analysis. Nirali Prakasan
- 8. David G Watson (2020) Pharmaceutical analysis. Elsevier
- 9. Cannors K.A. (1982) Text book of pharmaceutical analysis. Wiley
- 10. Chatton L.G. (1986) Pharmaceutical chemistry, Vol. I & amp; II. Marcel Dekker
- Beckett A.H. and Stenlake J.B. (1988) Practical Pharmaceutical Chemistry Part-II. Athlone Press
- 12. Jenkins GL, Knevel AM and DiGangi FE (1967) Quantitative pharmaceutical chemistry. Mc Graw Hill
- 13. Quality control methods for herbal materials. WHO.
- Harborne J. B. (1998) Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis. Chapman and Hall Ltd.
- 15. Kokate C K and Gokhale SB (2008) Practical Pharmacognosy Vallabh prakashan.

Course Outcomes

No.	Upon completion of the course the graduate	Cognitive	PSO
	will be able to	Level	addresse
			d
CO-1	Demonstrate an understanding of the principles	U	1
	and techniques involved in herbal drug industry		
CO-2	Identify medicinal plants of Kerala and understand	R, U	2
	their processing methods (hygiene and sanitation		
	practices in extracting processing)		
CO-3	Develop value-added medicinal products from raw	E, C, Ap	2,6
	materials.		
CO-4	Acquire hands-on experience through practical	Ар	4,6
	training sessions		

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: MEDICINAL PLANT MERCHANDISING

Credits: 2:0:2 (Lecture:Tutorial:Practical)

CO	СО	PO	PSO	Cognitive	Knowledge	Lecture
No.				Level	Category	(L)
						/Tutorial
						(T)/
						Practical
						(P)
CO-1	Demonstrate an	1	1	U	C,P	L
	understanding of the					
	principles and					
	techniques involved in					
	herbal drug industry					
CO-2	Identify medicinal	1	2	R, U	F, C	Т /Р
	plants of Kerala and					
	understand their					
	processing methods					

	(hygiene	and					
	sanitation p						
	01	0,	~	0.6	TT A		Ŧ
CO-	B Develop v	alue-added	5	2,6	U, Ap	F, C,P	L
	medicinal	products					
	from raw ma	aterials.					
00	a						
CO-	4 Acquire	hands-on	1,5	4,6	E, C, Ap	P,M	Р
CO-	Acquire experience	hands-on through	1,5	4,6	E, C, Ap	P,M	Р
CO-	1		1,5	4,6	E, C, Ap	P,M	Р
CO-	Acquire	hands-on	1.5	4.6	E. C. An	P.M	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	Р	90	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
	0	2	0	0	0	0	0	S	S	S	S	S	S	S	S	S
	1		3	4	5	6	7	0	0	0	0	0	0	0	0	0
								1	2	3	4	5	6	7	8	9
CO1	3	-	-	-	-	-	-	3	-	-	-	-	-	-	-	-
CO2	3	-	-	-	-	-	-	-	3	-	-	-	-	-	-	-
CO3	-	-	-	-	2	-	-	-	3	-	-	-	3	-	-	-
CO4	3	-	-	-	2	-	-	-	-	-	3	-	3	-	-	-
																3

Correlation Levels:

a. -(NA),

b. 1 (Mild),

- c. 2 (Moderate)
- d. 3 (High)

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments

• Final Exam

Mapping	of CO	s to .	Assessment	Rubrics	•
---------	-------	--------	------------	----------------	---

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	V		\checkmark	√
CO 2	\checkmark		\checkmark	\checkmark
CO 3			\checkmark	\checkmark
CO 4		√	\checkmark	

Discipline	BOTANY								
Course Code	MIUK4VACBOT	MIUK4VACBOT 256.1							
Course Title	FOOD PROCES	FOOD PROCESSING							
Type of	VAC	VAC							
Course									
Semester	IV	IV							
Academic	250 – 299								
Level									
Course	Credit	Lecture	Tutorial	Practical	Total				
Details		per week	per week	per week	Hours/Week				
	3	3 hours	-	2	5				
Pre-	Awareness of the potential of seasonal fruits								
requisites									
Course	A course in food	l processing	gives an u	nderstanding	about various				
Summary	aspects of food pr	roduction, p	reservation a	and safety.					

Module	Unit	nit Content 1									
		Fruits And Vegetable	6								
	1	Seasonal fruits of Kerala- Jackfruit, papaya, pineapple,									
		custard apple, guava, cucumber.									
	2	Harvesting, transportation and storage of fruits and vegetables.									
	3	3 Post harvest processing of fruits and vegetables: Peeling, sizing, blanching, Canning of fruits and vegetables.									
Ι	4	Good manufacturing practices, Standard operating									

		1 111	
		procedures, good laboratory practices.	
	5	Sanitation and the food industry: Sanitation, sanitation laws	
		and regulations and guidelines, Relationship of	
		microorganisms to sanitation, allergens, allergen control.	
	6	Personal hygiene and sanitary food handling: Role of HACCP	
		in sanitation, quality assurance for sanitation cleaning	
		compounds, handling and storage precautions; Sanitizers,	
		sanitizing methods, sanitation equipment, waste product	
		handling, solid waste disposal, liquid waste disposal	
		Food Microbiology	7
	7	Introduction, Classification of micro- organism, importance of	
		micro-organisms in food- primary sources of micro-organisms	
		in food- intrinsic and extrinsic parameters of food affecting	
		microbial growth. Isolation and detection of microorganisms	
		in food.	
II	8	Spoilage of foods - principles and types of spoilage. Microbial	
	0	spoilage and its prevention.	
	9	Food in relation to diseases- Food poisoning and intoxication-	
	9		
		Bacterial, Non bacterial- protozoa, fungi, virus, algae –	
		characteristics and preventive measures. Indicators of water	
		and food safety and quality.	10
		Value Added Products	10
	10	Preparation of Fruit Jam , jellies, and preserves;	
III	11	Fruit Juice and Nectars; Fruit Sauces and Syrups;	
	12	Dried Fruits; Fruit Leather; Fruit Vinegar; Fruit Chutneys;	
		Fruit Salsas; Fruit Ice Cream and Sorbet; Fruit Infused Spirits	
		Instrumentation	7
	13	Unit operations-classification -conservations of mass and	
		energy- Dimensions and units-Dimensional and unit	
		consistency-dimensionless ratios-EvaporatorsSingle and	
		multiple effect evaporator- Vacuum evaporator- Forced	
		circulation evaporators.	

	14	Mechanical separations- Filtration equipment. Sedimentation,	
		Gravitational sedimentation of particles in fluid and gas.	
		Setting under combined forces- Centrifugal and liquid –	
		Liquid separatoin – Centrifuge – Size reduction.	
	15	Principles of combination in Crushing and Mixing –	
		Characteristics- Particle size distribution – Energy and power	
IV		requirements – Crushing efficiency- Mixing of solids, pastes,	
		dry powders- Criteria of mixer effectiveness- Mixing index.	
		Solar equipment – Heaters, driers, cookers, distillators for	
		food products.	
	16	Refrigerators – Types of refrigeration system- Mechanical	
		vapour compression – Vapour absorption system –	
		Components of mechanical refrigeration- Refrigerants	
		Properties- Comparison of Freon and ammonia systems- cold	
		storages- Design of cold storages- Defrosting- Humidifiers	
		and dehumidifiers.	
		Technology	15
	17	Scope and importance of food preservation, Historical	
		developments in food processing. Types of foods and causes	
		of food spoilage. Definition of shelf life, perishable foods,	
		semi perishable foods, shelf stable foods. Principles of Food	
		Preservation	
	18	Freezing and Refrigeration: Introduction to refrigeration, cool	
V		storage and freezing, definition, principle of freezing, freezing	
		curve, changes occurring during freezing, types of freezing	
		i.e. slow freezing, quick freezing, introduction to thawing,	
		changes during thawing and its effect on food.	
	19	Food Preservation by high temperature Thermal Processing-	
		Introduction, classification of Thermal Processes, Principles	
		of thermal processing, Thermal resistance of microorganisms,	
		Thermal Death Time, Lethality concept, characterization of	
		Thermal Death Time, Lethality concept, characterization of heat penetration data. Commercial heat preservation methods: Sterilization, commercial sterilization, Pasteurization, and	

	blanching.
20	0 Food Preservation by Moisture control Drying and
	Dehydration - Definition, drying as a means of preservation,
	differences between sun drying and dehydration (i.e.
	mechanical drying), heat and mass transfer, factors affecting
	rate of drying, normal drying curve,; Effect of food properties
	on dehydration, change in food during drying ,drying methods
	and equipments air convection dryer, tray dryer, tunnel
	dryer ,continuous belt dryer , fluidized bed dryer, spray dryer,
	drum dryer, vacuum dryer ,freeze drying ,foam mat drying.

PRACTICAL (30 hrs)

1. Isolation and identification of specific microorganisms of normal and spoiled.

a. Fruits b. Vegetables

2. Preparation and preservation of seasonal fruits and vegetables

Preservation of foods by sugar-Jam, Jelly, Marmalade, Cordial, Squash, Fruit bars,

Fruit Preserves-Tuity Fruity (Papaya), Ginger Murabha (Ginger).

3. Preservation of foods by salt and acid-Vathal, Vadagam, Tomato ketchup and Squash, Pickles-Lemon, Mango, Mixed vegetable, Garlic.

4. Preservation by fermentation- Wine, Vinegar

References:

- Fellows, P. J. (2022). Food processing technology: principles and practice. Woodhead publishing.
- Simpson, B. K., Nollet, L. M., Toldrá, F., Benjakul, S., Paliyath, G., & Hui, Y. H. (Eds.). (2012). *Food biochemistry and food processing*. John Wiley & Sons.
- Brennan, J. G., & Grandison, A. S. (Eds.). (2012). Food processing handbook. Weinheim, Germany: Wiley-Vch.
- 4. Stumbo, C. R. (2013). Thermobacteriology in food processing. Elsevier.
- Van Boekel, M., Fogliano, V., Pellegrini, N., Stanton, C., Scholz, G., Lalljie, S., & Eisenbrand, G. (2010). A review on the beneficial aspects of food processing. *Molecular nutrition & food research*, 54(9), 1215-1247.
- 6. Lelieveld, H. L., Holah, J., & Napper, D. (Eds.). (2014). *Hygiene in food processing: principles and practice*. Elsevier.

- Karmas, E., & Harris, R. S. (2012). Nutritional evaluation of food processing. Springer Science & Business Media.
- 8. Yada, R. Y. (Ed.). (2017). *Proteins in food processing*. Woodhead Publishing.

Course Outcomes

•

No.	Upon completion of the course the graduate	Cognitive	PSO
	will be able to	Level	addresse
			d
CO-1	Conserve excess seasonal foods	U	PSO-1,4
CO-2	Start a new product business	R, U,	PSO-6
		Ap,C	
CO-3	Detect food spoilage	E, Ap, An	PSO-2,4
CO-4	Use some instruments in food processing	An	PSO-6

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: FOOD PROCESSING

Credits: 2:0:2 (Lecture:Tutorial:Practical)

CO No.	СО	PO	PSO	Cognitive Level	Knowledge Category	Lecture (L) /Tutorial (T)/ Practical (P)
	2	1.0				
CO-1	Conserve excess seasonal foods	1,2	1,4	U	F	L
CO-2	Start a new	5	6	R, U,	F, C	T /P
	product business			Ap,C		
CO-3	Detect food spoilage	1,2	2,4	E, Ap, An	F, C	L
CO-4	Use some instruments in food processing	6	6	An	Р	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

	Р	90	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
	0	2	0	0	0	0	0	S	S	S	S	S	S	S	S	S
	1		3	4	5	6	7	0	0	0	0	0	0	0	0	0
								1	2	3	4	5	6	7	8	9
CO1	3	3	-	-	-	-	-	3	-	-	3	-	-	-	-	-
CO2	-	-	-	-	3	-	-	-	-	-	-	-	1	-	-	-
CO3	3	3	-	-	-	-	-	-	3	-	2	-	-	-	-	-
CO4	-	-	-	-	-	3	-	-	-	-	-	-	3	-	-	-

Mapping of COs with PSOs and POs :

Correlation Levels:

- e. (NA),
- f. 1 (Mild),
- g. 2 (Moderate)
- h. 3 (high)

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal	Assignment	Project	End Semester
	Exam		Evaluation	Examinations
CO	\checkmark		\checkmark	\checkmark
1				
CO	\checkmark		\checkmark	\checkmark
2				
CO			\checkmark	\checkmark
3				

CO	\checkmark	\checkmark	√
4			

Discipline	BOTANY							
Course Code	MIUK4VACBOT 257.1							
Course Title	AQUAPONICS .	AQUAPONICS AND HYDROPONICS						
Type of	VAC							
Course								
Semester	IV							
Academic	250-299							
Level								
Course	Credit	Lecture	Tutorial	Practical	Total			
Details		per week	per week	per week	Hours/Week			
	4	3 hours	-	2 hours	5			
Pre-	Student must inte	rest and awa	areness abou	t this topic				
requisites								
Course	By the end of the course, students will acquire the knowledge about							
Summary	Aquaponics and	hydroponic	s and able	to maintain	a sustainable			
	cultivation and to	find out a s	elf-employn	nent.				

Module	Unit	Unit Content						
I		Introduction and Over view						
	1	Definition and principles of Aquaponics.						
	2 History and application of aquaponics.							
	3 Nutrient and Ph maintenance, Working of aquaponics.							
	4	Merits and demerits of aquaponics.						
II		Aquaponic Systems and maintenance						

	_		
	5	Components of aquaponics: - Fish tank, Filter, Mechanical and biofilters, Sump tank, Aerators	
	6	Types of aquaponic units: - media based grow bed, Deep	
		water culture bed-(Floating raft system), Nutrient film	
		techniques- Channel or gutter style system	
	7	Types of and fishes in aquaponics, Fish health management,	
	0	maintenance of water quality	
	8	Setting up and maintenance of aquaponics	10
III		Hydroponics	10
	9	Introduction, Definition and principles of Hydroponics.	
	10	History and application of hydroponics.	
	11	Hydroponic production – Basic principles, Historical	
		Perspectives	
	12	Advantages/Disadvantages.	
IV		Hydroponic System	15
	13	Types of Hydroponics Systems. Hydroponic systems - NFT,	
		DWC, gravel/sand/ebb-and flood, slab culture	
	14	Growing Substrates Plant Nutrition, Nutrient Solution and	
		System Monitoring: EC, pH,	
	15	Aerial Environmental Factors and Plant Growth: Light,	
		Temperature, CO2, RH, Cooling Systems.	
	16	Controlled Environment Agriculture -Indoor Vertical	
		Farming – Plant Factory Organic hydroponics	
	17	Hydroponics Systems in leafy greens, herbs, and microgreens	
		Hydroponics Systems in other crops.	
V		Productive output	15
	18	Evaluation of new crops for greenhouse/CEA use Indoor and	
		vertical farming	
	19	Overview of Controlled Environment Agriculture (CEA) and	
		Hydroponics	
	20	Plant and NFT management, Microgreens Production	
Dractical			

Practicals (30 hrs)

1. Identification to aquarium accessories like aerator, bubblers, feeding cup, food dispenser, filters-bottom, column and surface.

2. Checking and Adjusting pH of aquaponic culture

3. Identification of aquaponics animals (Tilapia, catfish, common carp) selecting crop, their management and care.

4. Field visit

References:-

1.Tyson, R. V., D. D. Treadwell, and E. H. Simonne. "Opportunities and Challenges to Sustainability in Aquaponic Systems." [In English]. Horttechnology 21, no.1 (Feb 2011): 6-13.

2.Sustainable Agriculture Research and Education (SARE), 2012. "Increasing economic and environmental sustainability of aquaculture production systems through aquatic plant culture."

3. Rakocy, J. 2006. "Aquaponics--Integration of Hydroponics with Agriculture." ATTRA-National Sustainable Agriculture Information Service. <u>http://www.aces.edu/dept/fisheries/education/documents/aquaponics_Integration</u> <u>ofhydroponicswaquaculture.pdf</u>

4. Crossley, Phil L. (2004), "Sub-irrigation in wetland agriculture", Agriculture and Human Values (21): 191-205

5. Boutwell, J. (2007, December 16). Aztecs' aquaponics revamped. Napa Valley Register

6. Bishop, M., Bourke, S., Connolly, K., Trebic, T. (2009). Baird's Village aquaponics project: AGRI 519/CIVE 519 Sustainable Development Plans. Holetown, Barbados: McGill University

Course Outcomes

No.	Upon completion of the course the graduate	Cognitive	PSO
	will be able to	Level	addresse
			d
CO-1	Manage hydroponic and aquaponic production systems.	U,Ap	6
CO-2	Design and construction of hydroponic plant production facilities.	Ap, C	2

CO-3	Produce disease resistant plants and avoid life	U,Ap	9
	style diseases		
CO-4	Describe specific hydroponic systems for	R,Ap,An	4
	successfully growing leafy greens, culinary herbs,		
	and fruiting vegetables		

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: ORGANIC FARMING

Credits: 2:0:2 (Lecture:Tutorial:Practical)

CO	СО	РО	PSO	Cognitive	Knowledge	Lecture (L)
No.				Level	Category	/Tutorial
						(T)/
						Practical (P)
CO-	Manage hydroponic	1	6	U,Ap	F, M	L
1	and aquaponic					
	production systems.					
CO -	Design and	8	2	Ap, C	С, Р	L/P
2	construction of					
	hydroponic plant					
	production facilities.					
CO-	Produce disease	1	9	U,Ap	Р, М	L
3	resistant plants and					
	avoid life style					
	diseases					
CO -	Describe specific	4	4	R,Ap,An	Р	L/T
4	hydroponic systems					
	for successfully					
	growing leafy greens,					
	culinary herbs, and					
	fruiting vegetables					

F-Factual,	C-	Conce	ntual.	P-Proc	edural.	M-N	Aetaco g	nitive
I I uctually	\sim	Conce	pruui		cuurung	,	ictucop	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Mapping of COs with PSOs and POs :

	Р	?O	Р	P	Р	Р	P	P	Р	Р	Р	Р	Р	Р	Р	P
	0	2	0	0	0	0	0	S	S	S	S	S	S	S	S	S
	1		3	4	5	6	7	0	0	0	0	0	0	0	0	0
								1	2	3	4	5	6	7	8	9
CO1	3	-	-	-	-	-	-	3	-	-	-	-	-	-	-	-
CO2	3	-	-	-	-	-	-	3	-	-	3	-	-	-	-	-
CO3	-	-	-	-	2	-	-	-	-	-	-	3	-	-	-	-
CO4	-	-	-	-	2	-	-	-	-	-	-	-	3	-	-	- 3

Correlation Levels:

- a. (NA),
- b. 1 (Mild),
- c. 2 (Moderate)
- d. 3 (High)

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments

Mapping of COs to Assessment Rubrics :

	Internal	Assignment	-	End	Semester
	Exam		Evaluation	Examinations	
CO	√			√	
1					
CO		\checkmark	√	√	
2					

CO	\checkmark		\checkmark	\checkmark
3				
СО	√	√		√
4				

SEMESTER V

Mar Ivanios College (Autonomous)

Discipline	BOTANY				
Course Code	MIUK5DSCBOT	300.1			
Course Title	TAXONOMY	OF ANG	IOSPERMS	AND	ECONOMIC
	BOTANY				
Type of	DSC A6				
Course					
Semester	V				
Academic	300 - 399				
Level					
Course	Credit	Lecture	Tutorial	Practical	Total
Details		per week	per week	per week	Hours/Week
	4	3 hours	-	2 hours	5
Pre-	Students should c	complete the	e course Ang	giosperm m	orphology and
requisites	Reproductive Bot	any			
Course	Course is designe	ed to provide	e students wi	ith a deep un	derstanding of
Summary	plant classificatio	n, identifica	tion, and stru	uctural featur	res. The course
	covers the princip	ples and me	thods of pla	nt taxonomy	, including the
	use of morphole	ogical and	anatomical	characteris	tics for plant
	classification. Stu	idents learn	about ecor	nomically in	portant plants
	and their uses.				

Detailed Syllabus:

Module	Unit	Content	Hrs
I		Nomenclature and Classification	10
	1	Definition, scope and significance of Taxonomy, History of	
		plant taxonomy. Plant Identification, documentation (keys	
		and flora), Concepts of Taxonomic hierarchy -	
		Species/Genus/Family, species concept and intraspecific	
		categories - subspecies, varieties and forms.	
		Basic rules of Binomial Nomenclature and International Code of Nomenclature for algae, fungi and plants (ICN or ICNafp). Preservation – preparation of preservative – FAA. Importance of herbarium, Herbarium techniques and Botanical gardens.	
	2	 Systems of classification: 1. Artificial -Carolus Linnaeus (Brief account only) 2. Natural -Bentham & Hooker- Detailed account 3. Phylogenetic –Engler & Prantl (Brief account only) 	
	3	4. APG system- Brief account only Activity- Create fictitious plant names that comply with	
	5	standard nomenclature regulations; in order to encourage students to apply their understanding of plant nomenclature	
		while fostering creativity and imagination.	
II		Study of Polypetalae Families	8
	4	A study of the following families with emphasis on the morphological peculiarities and Economic importance of its members (based on Bentham & Hooker's system) Annonaceae, Malvaceae, Rutaceae, Anacardiaceae, Combretaceae, Leguminosae	
III		Study of Gamopetalae Families	7
	5	A study of the following families with emphasis on the morphological peculiarities and Economic importance of its members (based on Bentham & Hooker's system) Apiaceae, Rubiaceae, Sapotaceae, Asteraceae, Apocynaceae,	

		Solanaceae, Lamiaceae	
IV		Study of Monochlamydeae and Monocotyledonae Families	5
	6	A study of the following families with emphasis on the morphological peculiarities and Economic importance of its members (based on Bentham & Hooker's system) Monochlamydeae - Amaranthaceae,Euphorbiaceae,	
	7	Monocotyledonae- Orchidaceae, Liliaceae and Poaceae	
V		Economic Botany	15
	8	Study of the major crop in Kerala with special reference to their Methods of cultivation, Botanical description, morphology of the useful part and economic importance - Coconut and Paddy.	
	9	 A brief account on the utility of the following plants, specifying the Binomial, family and morphology of the useful parts. Cereals- (Wheat & Maize), Millets- (Ragi & Fox tail millet), Pulses – (Black gram, Green gram, Bengal gram), Sugar yielding plants – (Sugar Cane), Spices- (pepper, cloves, cardamom), Beverages – (Coffee, Tea), Fibre yielding plants- (Cotton), Dye Yielding plants – (Henna and <i>Bixa Orellana</i>), Resins- (Asafoetida), Tuber crops – (Tapioca, Potato), Oil yielding plants- (Sesame, ground nut), Latex yielding plants- (Rubber), Medicinal plants – (Sida, Zingiber officinalis, Aloe vera and Vinca rosea), Insecticide-(Neem) 	
	10	Activity –Collect and submit any five plant materials used in	
	10	our day today life (Which are not mentioned in the syllabus)	

Practical

30 Hrs

1. Students must be able to identify the angiosperm members included in the syllabus up to the level of families. Draw labelled diagram of the habit, floral parts, L S of flower, T S of ovary, floral diagram, and floral formula and describe the salient features of the member in technical terms. (Minimum two plants from each dicot family and one from monocot family).

- 2. Identify the economic products obtained from the plants mentioned under Economic Botany
- 3. Students must submit practical records, Herbarium sheets (20 Nos: representing one sheet from each family) and Field book at the time of practical examination.
- 4. Field visits are to be conducted to familiarize the local flora. Field trips are to be conducted for three days either as continuous or one daytrips.

References

- Davis and Heywood (2011). Principles of Angiosperm Taxonomy. Oliver and Royd, London.
- 2. Lawrence. G.H.M. (1951). Taxonomy of Vascular Plants. Macmillan, NewYork.
- 3. Mukash Biswas (2014). Taxonomy of Angiosperms, Thomson publishers, ND
- 4. Naik, V.N. (1984). Taxonomy of Angiosperms. Tata McGraw Hill, NewYork.
- 5. Pandey & Misra (2014). Taxonomy of Angiosperms, Ane Books, India
- 6. Pandey B P (2001) Taxonomy of Angiosperms. S Chand and Co
- Sharma O P (2009). Plant Taxonomy. Mc Graw Hill Publishing Company Ltd, NewDelhi.
- 8. Singh V and Jain D K (2009). Taxonomy of Angiosperms, Rastogi Publication
- 9. Sinha R K (2010) Practical Taxonomy of Angiosperms. IK International Publishing Pvt Ltd.

10. Sivarajan, V.V (1991). Introduction to the principle of plant taxonomy, Oxford and IBH

Publishing Company

11. Verma B K (2011). Introduction to Taxonomy of Angiosperms. PHI Learning Pvt Ltd. 12. Kochhar, S L (2012). Economic Botany in Tropics. MacMillan & Co. New Delhi, India.

13. Panday, BP (2000). Economic Botany. S Chand Publishing Company. New Delhi. India

14. Verma V, (2009) Text Book of Economic Botany; Ane Books Pvt. Ltd.

Course Outcomes

No.	Upon completion of the course the graduate	Cognitive	PSO
	will be able to	Level	addresse
			d
CO-1	Understanding the fundamentals of Angiosperm	U	PSO-1
	taxonomy		
CO-2	Identify and classify plant species, using keys and	U, Ap	PSO 1&2
	taxonomic principles.		
C0-3	Analyse and identify common plant families and	U, Ap	PSO 6
	species based on morphological characteristics		
	such as leaves, flowers, fruits, and seeds and		
	familiar with the immense diversity of		
	angiosperms,		
C0-4	Learn about the cultivation practices of common	U	PSO 4
	crops and economic importance of angiosperms		
	in areas such as agriculture, horticulture, forestry,		
	medicine, industries etc.		

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: TAXONOMY OF ANGIOSPERMS AND ECONOMIC BOTANY

Credits: 2:1:2	(Lecture:Tutorial:Practical)
----------------	------------------------------

CO	СО	Р	PS	Cogniti	Knowle	Lectu	Practi
No.		0	0	ve	dge	re	cal (P)
				Level	Categor	(L)/Tu	
					У	torial	
						(T)	
CO-	Understanding the	1	1	U	F, C	L	
1	fundamentals of						
	Angiosperm taxonomy						
CO-	Identify and classify plant	1,	1,2	U, Ap	F,P	L	
2	species, using keys and	2					
	taxonomic principles.						

С0-	Analyse and identify	1,	6	U, Ap	Р	L	Р
3	common plant families	5					
	and species based on						
	morphological						
	characteristics such as						
	leaves, flowers, fruits, and						
	seeds and familiar with						
	the immense diversity of						
	angiosperms,						
С0-	Learn about the	2,	4	U		L	Р
4	cultivation practices of	5					
	common crops and						
	economic importance of						
	angiosperms in areas						
	such as agriculture,						
	horticulture, forestry,						
	medicine, industries etc.						

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	Р	PO	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	P	Р	Р	Р
	0	2	0	0	0	0	0	S	S	S	S	S	S	S	S	S
	1		3	4	5	6	7	0	0	0	0	0	0	0	0	0
								1	2	3	4	5	6	7	8	9
CO1	3	-	-	-	-	-	-	3	-	-	-	-	-	-	-	-
CO2	3		-	-	-	-	-		2	-	-	-	-	-	-	-
		2						3								
CO3	3	-	-	-	2	-	-	-	-	-	-	-	3	-	-	-
CO4	-	3	-	-	2	-	-	-	-	-	3	-	-	-	-	-

Correlation Levels:

a. - (NA),

b. 1 (Mild),

- c. 2 (Moderate)
- d. 3 (High)

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal	Assignment	Project	End	Semester
	Exam		Evaluation	Examinations	
CO	\checkmark	\checkmark		\checkmark	
1					
CO	\checkmark	\checkmark		\checkmark	
2					
CO	\checkmark		\checkmark	\checkmark	
3					
CO	\checkmark	\checkmark		\checkmark	
4					

Mar Ivanios College (Autonomous)

Discipline	BOTANY							
Course Code	MIUK5DSCBOT 30	MIUK5DSCBOT 301.1						
Course Title	ENVIRONMEN	TAL STUI	DIES					
Type of	DSC							
Course								
Semester	V							
Academic	300-349							
Level								
Course	Credit	Lecture	Tutorial	Practical	Total			
Details		per week	per week	per week	Hours/Week			
	4	3 hours	-	2 hours	5			
Pre-	1. Should comple	te all course	s of IV Sem	nester				
requisites								
Course	Inculcate enviro	nmental av	wareness ar	nong stude	nts for the			
Summary	protection of natu	re						

Detailed Syllabus:

Module	Unit	Content	Hrs			
Ι	ľ	NATURAL RESOURCES AND ITS CONSERVATION	8			
	1	Natural Resources - Renewable and Non-renewable				
		Land and Air, Soil, Water, Energy,				
		Minerals, Food and agriculture, Forests, Plants & animals;				
		Wild life resources. Degradation of natural resources - Land				
		degradation, degradation of water resources, Loss of flora and				
		fauna;				

		Causes – population explosion, over exploitation,	
		deforestation, agriculture mismanagement, desertification, overgrazing, soil erosion, mining, urbanization and	
		industrialization- change in land use, depletion of water	
		resources.	
	2	Conservation of Natural resources and sustainable life styles.	
		Land and soil- Afforestation, regeneration of waste land	
		Energy - Promoting use of renewable resources-solar, tidal	
		and wind; biodiesel, biofuels. Forests- Reforestation,	
		Community forestry programmes	
II		ECOSYSTEMS	10
	3	Ecosystems - Concept, definition, structure and function;	
		components- biotic and abiotic, energy flow.	
	4	Food chains -Food web ,ecological Pyramids,	
		biogeochemical cycles - Carbon and Phosphorous cycle	
	5	Ecological succession: Definition, primary and secondary	
		succession, climax concept, hydrosere and xerosere.	
	6	Plant adaptations- Morphological, anatomical, physiological	
		adaptations of Hydrophytes, Xerophytes, Halophytes,	
		Epiphytes, Parasites	
	7	Introduction- types, characteristic features, structure and	
		functions of the following ecosystems. Forest ecosystem, 2.	
		Grassland ecosystem, 3. Desert ecosystem, 4. Aquatic	
		ecosystems- Ponds, Streams, Rivers, Oceans, Estuaries (brief	
		account only)	
	8	Millennium Ecosystem Assessment (MA), Cultural services:	
		recreational opportunities, spiritual and aesthetic values, and	
TT		cultural heritage associated with ecosystems.	0
III	0	ENVIRONMENT AND SOCIAL ISSUES	8
	9	Climate changes and rise in sea level, global warming ,acid	
		rains, Ozone layer depletion, Nuclear accidents and	
	10	holocaust	
	10	Resettlement and rehabilitation of people - Problems and	

		concerns	
	11	Water conservation, Rain water harvesting , Watershed	
		management, ground water dams	
	12	Sustainable development; Key aspects, sustainable agriculture	
		, sustainable forestry	
IV		ENVIRONMENTAL LEGISLATIONS	4
	13	Environment protection Act (1986); Air [prevention and	
		control of pollution] Act (1981; Amended 1987); Water	
		[prevention and control of pollution] Act (1974;	
		Amended 1988); Wildlife Protection Act (1972); Forest	
		conservation Act (1980). (Scope and relevance only)	
	14	Environmental Organisations –UNEP, IPCC, WWF,	
		Central Pollution Control Board	
V		ENVIRONMENTAL POLLUTION	15
	15	Definition, causes, effects and control measures of -1 .	
		Air pollution, 2. Water pollution, 3. Soil pollution, 4.	
		Marinepollution, 5. Noisepollution, 6. Thermal pollution.	
	16	Solid Waste Management- waste minimization, Recycling	
		and Reuse, Consuming environment friendly products.	
		E-waste management.	

Practicals (30hrs)

- 1. Visit a local polluted site and report major pollutants.
- 2. Study of ecological and anatomical modifications of Xerophytes, Hydrophytes,
- 3. Halophytes, Epiphytes and Parasites.
- 4. Observe and study different ecosystems mentioned in the syllabus.

References :

- Ahluwalia VK and Sunitha Malhotra (2009). Environmental Science, Ane Books Pvt. Ltd.
- 2. Ambasht R.S. (2008). Textbook of Plant Ecology, Students and Friends & Co. Varanashi.
- Aravind Kumar (2009). Pollution and Biodiversity, Biosocial Aspects, Daya Publishing House.

- Asthana D.K and Meera Asthana (2006). A Textbook of Environmental Studies, S. Chand & Company Ltd. New Delhi.
- Chandoco.S Weaver and Clements (1949). Plant Ecology, McGraw Hill Publications, New York.
- Chapman J.L. (2006). Ecology-Principles and Application. Cambridge University Press India Pvt. Ltd.
- 7. Cutter Susan L. (1999). Environmental Risks and Hazards. Prentice Hall, New Delhi.
- 8. Edward Bryant (2005). Natural Hazards, Cambridge University Press.
- Erach Bharucha (2013). Textbook of Environmental Studies for Undergraduate Courses, Universities Press, University Grants Commission.
- 10. Hill Mc Jurie, Ian Mason and C. Kilburn. (2002). Natural Hazards and Environmental Change, Oxford University Press, New York.
- 11. Kumaresan B. (2009). Plant Ecology & Phytogeography, Rastrogi Publications.
- 12. Misra S Pandey S N. (2009). Essential Environmental Studies, Ane Books Pvt. Ltd.
- Odum Eugene P (2018). Fundamentals of Ecology, 5th Edn. Philadelphia & Saunders, Tokyo, Toppon.
- 14. Periasamy, K. (1965). Elements of Plant Ecology, M.K.Publications.
- 15. Sharma, P.D. (1981). Elements of Ecology, Rastogi's Company Ltd., Publications.
- 16. Stephen Wise (2002). GIS Basics, Taylor and Francis, New York.
- 17. Vaidya K. S. (1987). Environmental Geology, Tata Mc Graw Hill (Pub.).
- 18. Vashista P.C (1984). Plant Ecology, Edu. Vishali Publications.
- 19. Verma and Agarwal (2010). Principles of Ecology, S. Chand and Co.
- 20. Verma, P. S. and V. K. Agrawal. (2004). Cell Biology, Genetics, Molecular Biology, Evolution and Ecology, S. Chand & Company Ltd., New Delhi.
- 21. Silent Spring by Rachel Carson 1962.
- 22. The End of Nature by Bill McKibben Published in 1989.
- 23. Collapse: How Societies Choose to Fail or Succeed by Jared Diamond 2005.
- 24. Cradle to Cradle: Remaking the Way We Make Things by William McDonough and Michael Braungart 2002.
- 25. The Sixth Extinction: An Unnatural History by Elizabeth Kolbert Published in 2014.
- 26. Ecology: The Economy of Nature by Robert E. Ricklefs and Rick Relyea 2007.
- 27. Environmental Science: Earth as a Living Planet by Daniel B. Botkin and Edward A. Keller 1995.
- 28. Environmental Politics and Policy by Walter A. 1989.

- 29. An Inconvenient Truth: The Planetary Emergency of Global Warming and What We Can Do About It by Al Gore - 2006.
- 30. Our Common Future (The Brundtland Report) by the World Commission on Environment and Development 1987.

Course Outcomes

No.	Upon completion of the course the graduate	Cognitive	PSO
	will be able to	Level	addresse
			d
CO1	Gain awareness of environmental issues and	Ap, An	PSO -1,2
	develop critical thinking skills to evaluate		
	environmental problems, analyze data, and		
	propose potential solutions.		
CO2	Appreciate the interdisciplinary nature of	U	PSO - 7
	environmental science by integrating knowledge		
	from fields such as biology, chemistry, physics,		
	geology, sociology, economics, and political		
	science.		
CO3	Understand the principles of sustainability and the	U, Ap	PSO -8
	importance of sustainable practices in managing		
	natural resources and ecosystems.		
CO4	Gain insight into environmental policy	R, E	PSO -1,8
	frameworks, regulations, and international		
	agreements, and their role in addressing global		
	environmental challenges.		

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: ENVIRONMENTAL STUDIES

Credits: 2:1:2 (Lecture:Tutorial:Practical)

CO	СО	РО	PSO	Cognit	Kno	Lecture	
----	----	----	-----	--------	-----	---------	--

No.				ive	wled	(L)/Tutoria
				Level	ge	l (T)
					Cate	Practical
					gory	(P)
СО	Gain awareness of	1	1,2	U,Ap	F	L/T
1	environmental issues and					
	develop critical thinking					
	skills to evaluate					
	environmental problems,					
	analyze data, and propose					
	potential solutions.					
CO	Appreciate the	1,3	7	U	С	L
2	interdisciplinary nature of					
	environmental science by					
	integrating knowledge from					
	fields such as biology,					
	chemistry, physics, geology,					
	sociology, economics, and					
	political science.					
CO	Understand the principles of	1,3	8	An	C	L/T
3	sustainability and the					
	importance of sustainable					
	practices in managing natural					
	resources and ecosystems.			_	~	-
CO	Gain insight into	1	1,8	E	С	L
4	environmental policy					
	frameworks, regulations, and					
	international agreements, and					
	their role in addressing					
	global environmental					
	challenges.					

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	Р	PO	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
	0	2	0	0	0	0	0	S	S	S	S	S	S	S	S	S
	1		3	4	5	6	7	0	0	0	0	0	0	0	0	0
								1	2	3	4	5	6	7	8	9
CO1	3	-	-	-	-	-	-	3	2	-	-	-	-	-	-	-
CO2	3	-	3	-	-	-	-	-	-	-	3	-	-	3	-	-
CO3	3	-	3	-	2	-	-	-	-	-	-	3	-	-	3	-
CO4	3	-	-	-	2	-	-	3	-	-	-	-	-	-	3	-

Correlation Levels:

- a. (NA),
- b. 1 (Mild),
- c. 2 (Moderate)
- d. 3 (High)

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal	Assignment	Project	End	Semester
	Exam		Evaluation	Examinations	
CO	\checkmark			\checkmark	
1					
CO	\checkmark			\checkmark	
2					
CO	\checkmark	\checkmark		\checkmark	
3					
CO		\checkmark		\checkmark	
4					

Mar Ivanios College (Autonomous)

Discipline	BOTANY									
Course Code	MIUK5DSCBOT	302.1								
Course Title	GENETICS									
Type of	DSC A8									
Course										
Semester	V									
Academic	300 - 399									
Level										
Course	Credit	Lecture	Tutorial	Practical	Total					
Details		per week	per week	per week	Hours/Week					
	4	3 hours	-	2 hours	5					
Pre-	Students should	complete the	e course Cell	and Evolution	onary Biology					
requisites										
Course	Gives an overview	-	-	•						
Summary	the basic principl									
	The course imp									
	including linkage									
	chromosomal and									
	genetic variation									
	includes basic con	-	-							
	and environmenta	u influences	on epigenet	ic modificati	on					

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		Mendelian Genetics	5
	1	Mendel and his experiments- Experimental plant, characters	
		selected, Principles, reason for the success	
	2	Monohybrid Experiments- law of segregation	
	3	Dihybrid Experiments- Law of Independent assortment, Back	

		cross and Testcross, Reciprocal cross									
II		Interaction of Genes and Variation from Mendelian	10								
	ratios	8									
	4	Allelic interaction- Incomplete dominance -Flower color in									
		Mirabilis; Codominance-AB blood group, .MN blood Group									
	5	Non allelic Interaction of genes-Collaborative gene-Comb									
		pattern in poultry, 9:3:3:1;Epistasis - Recessive epistasis-									
		Coat color in mice. 9:3:4; Dominant epistasis- Fruit colour in summer squash, 12:3:1; Complementary genes-Flower color									
		in Lathyrus 9:7; Duplicate gene with cumulative effect- Fruit									
		shape in summer squash. 9:6:1; Duplicate dominant genes -									
		Fruit shape in Capsella bursa-pastoris -15:1; Inhibitory gene-									
		Leaf color in Paddy, 13:3.Pleiotropism- Phenylketonuria;									
		Penetrance and Expressivity									
III		Patterns of Inheritance									
	6	Multiple alleles-General account. ABO blood group in man.									
		Rh factor, Self-sterility in Nicotiana									
	7	Quantitative characters- General characters of quantitative									
		inheritance, polygenic inheritance; Skin color in man, Ear									
		size in Maize.									
	8	Extra nuclear inheritance General account, maternal influence.									
		Plastid inheritance in Mirabilis. Shell coiling in snails, kappa									
		particle in Paramecium.									
V		Population Genetics and Epigenetics	5								
	9	Hardy Weinberg law, Factors affecting equilibrium -									
		Mutation, Migration, selection and Genetic drift.									
	10	Epigenetics- Basic Concepts -an overview of basic genetics	1								
		concepts like DNA, genes, and heredity, epigenetic									
		mechanisms- DNA methylation, histone modifications, and									
		non-coding RNAs. , Environmental Influence: Highlight how									
		environmental factors can influence epigenetic modifications.									
	11	Activity -Discuss studies that demonstrate how diet, stress,									
		toxins, and lifestyle choices can impact gene expression									

		through epigenetic changes									
IV		Chromosomal Basis of inheritance	15								
	12	Linkage - Linkage and its importance, linkage and									
		independent									
		assortment. Complete and incomplete linkage.									
	13	ossing over – a general account, two point, three point									
		oss. Determination of gene sequence. Interference and									
		coincidence. Mapping of chromosomes.									
	14	Sex determination- Sex chromosomes, chromosomal basis of									
		sex determination XX- XY, XX-XO mechanism. Sex									
		determination in higher plants (Melandrium album)									
	15	Sex chromosomal abnormalities in man- Klinefelter's									
		syndrome, Turner's									
		syndrome. Sex linked inheritance- X- linked inheritance -									
		White Eye colour in Drosophila, Hemophilia in man. Y-									
		linked inheritance-Hypertrichosis of the ear.									

Practicals (30 Hrs)

1. Monohybrid cross (Dominance and incomplete dominance), Dihybrid cross (Dominance and incomplete dominance)

2. Gene interactions (All types of gene interactions mentioned in the syllabus)

- a. Recessive epistasis 9: 3: 4.
- b. Dominant epistasis 12: 3:1
- c. Complementary genes 9:7
- d. Duplicate genes with cumulative effect 9: 6:1
- e. Inhibitory genes 13:3
- f. Duplicate dominant gene 15: 1
- g. Collaborative gene 9:3:3:1
- 4. Linkage and crossing over
- a. Two point and three point crosses
- b. Construction of genetic map.

References

1. Gardner, EJ, Simmons, MJ. &Snustad, D. 1991. Principles of Genetics, 8th Edn, John John Wiley, New York.

2. Gardner, E.J and Snustad, D.P(1984) Principles of Genetics. John Wiley, New York.

3. Gupta, P.K. 2018. Genetics. 5th Edition, Rastogi Publications, Meerut. Hill, New Delhi

4. John Ringo (2004) Fundamental Genetics. Cambridge University Press India Pvt. Ltd

5. Sinnott, EW, Dunn, LL. & Dobzhansky, T. 1997. Principles of Genetics, Tata MaGraw

6. Veer Bala Rastogi (2008), Fundamentals of Molecular Biology Ane Books Pvt. Ltd

7. Verma, P. S. & V. K. Agarwal, 2003, Genetics. S. Chand &Co. Ltd., New Delhi Wiley & Sons, New York.

Course Outcomes

No.	Upon completion of the course the graduate	Cognitive	PSO
	will be able to	Level	addresse
			d
CO-1	Grasp fundamental concepts Mendelian	U	PSO-1
	inheritance, and genetic variation.		
CO-2	Equip with a strong foundation in genetic	R, U	
	principles and the skills necessary to apply them		PSO-5,6
	in various contexts, whether in further academic		
	study and research.		
CO-3	Equip for solving problems with relevance to the	App,An	PSO-2
	principles and applications of genetics.		
CO-4	Learn how genetics intersects with other fields	Е	PSO-1
	such as medicine, agriculture, forensics,		
	anthropology, or evolutionary biology.		

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: GENETICS

Credits 4: 3:0:2 (Lecture:Tutorial:Practical)

CO	СО	Р	PS	Cogniti	Knowle	Lecture
No.		0	0	ve	dge	(L)/Tutorial
				Level	Categor	(T)
					У	Practical (P)

CO- 1	GraspfundamentalconceptsMendelianinheritance,and geneticvariation.	1	1	U	F, C	L/P
CO- 2	Equip with a strong foundation in genetic principles and the skills necessary to apply them in various contexts, whether in further academic study and research.	1, 5	5,6	R, U	F,P	L
C0-3	Equip for solving problems with relevance to the principles and applications of genetics.	2	2	App,An	Р	L/P
C0-4	Learn how genetics intersects with other fields such as medicine, agriculture, forensics, anthropology, or evolutionary biology.	1	7	U	F,C	L/P

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	Р	PO	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
	0	2	0	0	0	0	0	S	S	S	S	S	S	S	S	S
	1		3	4	5	6	7	0	0	0	0	0	0	0	0	0
								1	2	3	4	5	6	7	8	9
CO1	3	-	-	-	-	-	-	3	-	-	-	-	-	-	-	-
CO2	3	-	-	-	2	-	-	-	-	-	-	3	3	-	-	-
CO3	-	3	-	-	-	-	-	-	3	-	-	-	-	-	-	-

Correlation Levels:

- a. (NA),
- b. 1 (Mild),
- c. 2 (Moderate)
- d. 3 (High)

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal	Assignment	Project	End	Semester
	Exam		Evaluation	Examinations	
CO	\checkmark	\checkmark		\checkmark	
1					
CO	\checkmark	\checkmark		\checkmark	
2					
CO	\checkmark	\checkmark		\checkmark	
3					
CO	\checkmark	\checkmark		\checkmark	
4					

Mar Ivanios College (Autonomous)

Discipline	BOTANY	BOTANY								
Course Code	MIUK5DSEBOT 303.1									
Course Title	PLANT BIOTECHNOLOGY									
Type of	DSE									
Course										
Semester	V									
Academic	301-399									
Level										
Course	Credit	Lecture	Tutorial	Practical	Total					
Details		per week	per week	per week	Hours/Week					
	4	3 hours	-	2 hours	5					
Pre-	Should have a know	owledge abo	out plant cell	and cell divi	sion.					
requisites										
Course	Overview in the f	field of plan	t biotechnol	ogy, historic	al context, and					
Summary	its significance i	n agricultu	re, medicine	e, and indus	try. Study the					
	techniques for th			•	•					
	tissues, and orgar			· •						
	organogenesis,		•		•					
		principles and methods of genetic engineering, recombinant DNA								
	technology, trans			-	-					
	culture and basic		U							
	biology of plan	-		•	in laboratory					
	techniques related	l to plant bio	otechnology.							

Detailed Syllabus:

Module	Unit	Content	Hrs
I		Plant Tissue Culture	6
	1	Introduction – History- major achievements-Biotechnology in	
		India.	
	2	Plant Tissue culture – Totipotency- definition and importance	
		- dedifferentiation, redifferentiation and Cytodifferentiation.	
	3	Equipments and other requirements in tissue culture	
		laboratory – instruments, tools, glass wares	
	4	Sterilization- Explants, equipments and medium	
	5.	Culture media-MS Medium, composition and preparation	
	6	Inoculation – Subculture, Callus and suspension culture,	
		meristem culture	
	7.	Soma clonal variation, Somatic embryogenesis, Embryo	
		culture and embryo rescue. and organogenesis.	
	8	Production of haploids – pollen culture, anther culture –	
		protoplast culture -somatic hybrids - cybrids - for production	
		of haploid Plant hardening transfer to soil, green house	
		technology.	
	9.	Economic exploitation of plant tissue culture.	
II		Recombinant DNA technology	6
	10	General account of cloning vehicles – plasmid,	
		bacteriophages, cosmids and phagemids. Cutting and joining	
		of DNA molecules – restriction endonucleases, ligases – Gene	
		library.	
	11.	Brief account of gene transfer techniques - Direct DNA	
		uptake by protoplast vector method Agrobacterium mediated,	
		physical method- electroporation- shot gun method -	
		microinjection.	
III		Methods in Biotechnology.	9
	12.	Isolation and purification of DNA from plant cells.	

	13.	A gamaga gal algotrophoragia							
		Agarose gel electrophoresis							
	14.	PCR, RFLP, DNA sequencing-Sanger's method, Next-							
		generation sequencing (NGS), Southern blotting, ELISA.							
	15.	Forensics - DNA finger printing.							
IV		Application of genetic transformation	9						
	16.	Medicine – edible vaccines from plants, gene therapy							
	17.	Agriculture – nif genes, genetically modified crops – Golden	1						
		rice, Flavr savr tomato, Bt crops - herbicide resistance,							
		fungal resistance,							
	18.	Environment- Bioremediation- use of genetically engineered							
		bacteria-Super bug							
	19.	Production technology of plantibodies and monoclonal							
		antibodies by hybridoma technology. Transgenic plants as							
		bioreactors.							
	20	Biosafety and ethical issues, Intellectual Property Rights	1						
		(IPR)							
V		Industrial applications	15						
	21	Horticulture and Floriculture Industry,							
	22	Production of alcohol							
	23.	Production of vitamins	1						
	24.	Single cell protein							
	25.	Activity: Visit to biotechnology lab and document.							

PRACTICALS (30 hrs)

- 1. Preparation of MS medium.
- 2. Process of in vitro sterilization and inoculation methods by using different explants (leaf, nodal bud and seeds of tobacco, Datura, Brassica)
- 3.Study of anther, embryo and endosperm culture, micropropagation, somatic embryogenesis
- 4. Extraction and separation of plant DNA by agarose gel electrophoresis.
- 5. Extraction and separation of Plant protein by SDS-PAGE.

Reference

1.Bhojwani SS, Dantu PK. Plant tissue culture: an introductory text. India:Springer. 2013;318

2. Bhojwani, S.S. and Bhatnagar, S.P. (2011). The Embryology of Angiosperms. Vikas Publication House Pvt.Ltd., New Delhi. 5th edition.

3. Bhojwani, S.S. and Razdan, M.K., (1996). Plant Tissue Culture: Theory and Practice. Elsevier Science Amsterdam. The Netherlands.

4. Chawla, H.S. (2002). Introduction to Plant Biotechnology. New Delhi: Oxford and IBHP Publishing Co. Pvt. Ltd.

5. Glick, B.R., Pasternak, J.J. (2003). Molecular Biotechnology- Principles and Applications of recombinant DNA. ASM Press, Washington.

6. Halford, N., & Halford, N. G. (2007). Plant Biotechnology: Current and Future Applications of Genetically Modified Crops. New Jersey: John Wiley & Sons.

7. Ignacimuthu, S. (2004). Plant Biotechnology. New Delhi: Oxford and IBH Publishing House.

8. Kumar,U. (2008). Plant Biotehnology and biodiversity conservation. Jodhpur: Agrobios.

9. Snustad, D.P. and Simmons, M.J. (2010). Principles of Genetics. John Wiley and Sons, U.K. 5th edition.

10.Stewart, C.N. Jr. (2008). Plant Biotechnology & Genetics: Principles, Techniques and Applications. John Wiley & Sons Inc. U.S.A

No.	Upon completion of the course the graduate	Cognitive	PSO
	will be able to	Level	addressed
CO-1	Learn various biotechnological techniques used in plant research and agriculture.	U	PSO-1,2
CO-2	Enhance skill in the technique that involves the aseptic culture of plant cells, tissues, or organs in a nutrient-rich medium to propagate plants.	U,C	PSO-5
CO-3	Able to apply biotechnological approaches to	Ар	PSO-6

Course Outcomes

	improve crop traits for yield and resistance .		
CO-4	Acquire hands-on experience in laboratory	R,U,Ap	PSO-6
	techniques commonly used in plant		
	biotechnology research		

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: PLANT BIOTECHNOLOGY

Credits: 2:1:2 (Lecture:Tutorial:Practical)

CO	СО	РО	PSO	Cogni	Knowled	Lecture
No.				tive	ge	(L)
				Level	Category	/Tutorial
						(T)/
						Practical
						(P)
CO-1.	Learn various	1	1,2	U	F	L
	biotechnological					
	techniques used in					
	plant research and					
	agriculture.					
CO-2	Enhance skill in the	5	5	U,C	C ,F,P	T/P
	technique that					
	involves the aseptic					
	culture of plant cells,					
	tissues, or organs in a					
	nutrient-rich medium					
	to propagate plants					
CO-3	Able to apply	1,5	6	Ap	,F,,C P	L/P
	biotechnological					
	approaches to improve					
	crop traits for yield					
	and resistance.					

CO-4	Acquire	hands-on	1,5	6	R,U,A	C,P	L/P
	experience	in			р		
	laboratory	techniques					
	commonly	used in					
	plant bio	technology					
	research						

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

	Р	PO	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
	0	2	0	0	0	0	0	S	S	S	S	S	S	S	S	S
	1		3	4	5	6	7	0	0	0	0	0	0	0	0	0
								1	2	3	4	5	6	7	8	9
CO1	3	-	-	-	-	-	-	3	3	-	-	-	-	-	-	-
CO2	-	-	-	-		-	-		-	-	-	3	-	-	-	-
					3			3								
CO3	3	-	-	-	2	-	-	-	-	-	-	-	3	-	-	-
CO4	3	-	-	-	2	-	-	-	-	-	-	-	3	-	-	-

Mapping of COs with PSOs and POs :

Correlation Levels:

- a. (NA),
- b. 1 (Mild),
- c. 2 (Moderate)
- d. 3 (High)

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

I	Internal	Assignment	Project	End	Semester
---	----------	------------	---------	-----	----------

	Exam		Evaluation	Examinations
СО	\checkmark	\checkmark		✓
1				
СО		√		✓
2				
СО	✓	✓		
3				
СО		√		✓
4				

Mar Ivanios College (Autonomous)

Discipline	BOTANY								
Course Code	MIUK5DSEBOT 304.1								
Course Title	FORESTRY AN	D PHYTO	GEOGRAP	HY					
Type of	DSE II								
Course									
Semester	V								
Academic	300 - 349								
Level									
Course	Credit	Lecture	Tutorial	Practical	Total				
Details		per week	per week	per week	Hours/Week				
	4	3 hours	-	2 hours	5				
Pre-	Awareness about	forestry and	l phytogeogr	aphy					
requisites									
Course	Conserving the r	natural herit	age of the	country by	preserving the				
Summary	remaining natural	forests with	n the vast var	riety of flora	and fauna.				

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		Fundementals of forestry	5
	1	Basic definitions:- Forestry, Silviculture, Pollarding,	
		Lopping, Pruning, Taungya system, Coppice, Seed	
		orchards, Seed stand, Pricking out, Wind breaks, Shelter	
		belts, Tending, Felling.	
	2	Afforestation, Reforestation, Age crop, Age classification,	
		Alpine, Basal area, Bole, Breast height, Coupe, Crown,	
		Dendrology.	

	3	Reserved forest, Protected forest, Unclassed forest,	
		Log,Logging, Pod, Raft, Scrub, Succession.	
II		Silviculture	5
	4	Introduction:- Siliviculture pertains to the raising,	
		development, care, reproduction and overall management of	
		forest crops.	
	5	Objectives of silviculture	
		Silviculture – General	
		Silviculture-Systems	
		Silviculture – Mangrove and Cold desert	
		Silviculture of Trees	
	6	Soil science, Chemistry and fertility of soil.Forest Soils,	
		Soil Conservation and Watershed Management.	
III		Forest	13
	7	Types of forest and functions of forest	
	8	Agroforestry:- Agroforestry - definition, concept and	
		objectives. Classification of agroforestry systems - primary	
		systems and subsystems - inheritance effects. Tree-crop	
		interactions - above and below ground - competition for	
		space, water, light and nutrients. Microclimatic	
		modifications - nutrient cycling and soil fertility	
		improvement -Allelopathy and allelochemicals Ecological	
		aspects of agroforestry - benefits and limitations of	
		agroforestry. Urban Forestry - definition and scope -	
		benefits - choice of tree species - planting techniques and	
		management	
	9	Social forestry -objectives and scope and necessity - its	
		components and implementation in local and national levels	
	10	Forest Protection :-Role of forest protection in Indian	
		forestry. Injuries caused by various agencies - by human	
		beings, plants, animals, insects, birds, adverse climatic	
		factors. Forest fire -beneficial and adverse causes - fire	

		protection methods and rehabilitation. Pests and diseases of	
		economic trees - control measures for pests and diseases for	
		major tree species - biological, chemical and integrated pest	
		and disease management methods. Termites - types and	
		their management. Alien or invasive weeds and their	
		management - forest encroachments and grazing.	
	11	Wildlife Biology and Management:- Wildlife and wild	
		animals - food chain - prey and predator relationship.	
		Introduction to wildlife management. Ecology and biology	
		of wildlife - principles and techniques of management -	
		Man and Biosphere (MAB) programme	
		Activity: Power point presentation on different types of	
		forest	
		Phytogeography	7
	12	Concept & definition, species distribution- continental drift,	
IV		continuous and discontinuous distribution.	
	13	Vegetation in India – Forests- tropical, temperate, sholas,	
		sub alpine, alpine, mangroves & Grass lands.	
	14	Phytogeographical regions of India -Western and eastern	
		Himalayas, Desert, Western Ghats, Deccan Peninsula,	
		Gangetic Plain, North East India, Coasts & Islands	
	15	Activity: Site study	
V	Forest policies		
	16	Salient features of Indian Forest policies	
	17	Forest laws -necessity - general principles - Indian Forest	
		Act 1927, Forest Conservation Act 1980, Wildlife	
		Protection Act, Recent Policies and Acts - Tribal Bill, 2007,	
		Biodiversity Bill, 2002, National Agroforestry Policy 2014.	
		ITTO, GATT and its relevance to timber export - Rio	
		summit and Kyoto Protocol and its relevance to timber	
1			
		export.	

Practicals (30hrs)

1. Phytogeographical regions of India- Photos/Diagram

References:

- 1. Baumer 1989. Agroforestry for watershed management. ICRAF, Kenya
- Datta SK. 1986. Soil Conservation and Land Management.International Book Distributors, Dehra Dun.
- Dhruva Narayana VV 1993. Soil and water conservation research in India, ICAR, New Delhi
- 4. Hamilton IS. 1987. Forest and Watershed Development and Conservation in Asia and the Pacific. International Book Distributors, Dehra Dun.
- Hamilton IS. 1988. Tropical Forest Watersheds. Hydrologic and Soil Response to Major Uses of Conservation. International Book Distributors Dehra Dun.
- Hewlett, JD and Nutter, WL 1969. An outline of forest hydrology. University of Georgia Press, Athens
- 7. Moorthy VVN. 1990. Land and Water Management. Kalyani Press
- 8. Morgan 1984. Soil Conservation. Nataraj Pub, Dehra Dun
- 9. Murty JVS 1995. Watershed Management in India. Wiley Eastern, New Delhi.
- Oswal MC. 1999. Watershed Management (For Dryland Agriculture), Associated Publishing Co., New Delhi.
- 11. Rajora R. 1998. Integrated Watershed Management. Ravat Publ., New Delhi.
- 12. Rama Rao. 1980. Soil Conservation. Standard Book Depot, Bangalore.
- Satterlund, DR. 1972. Wildland watershed management. The Ronald Press Company, New York
- Edwards, D.G.W and Naithani, S.C. 1999. Seed and nursery Technology for Forest Trees. New Agri. International Publishers, New Delhi.
- 15. Gurumurthy, K., Mcena, D and Bhandari, H.C.S 1989.Vegetative Propagation, IFGTB, Coimbatore
- 16. Hartmann, H.T.,Kester, D.E, Davies, F.T and Geneva, R.L 1997. Plant Propagation Principles and Practices, Prentice hall of India, Pvt. Ltd, New Delhi
- 17. Duryea ML. and Landis TD. (eds). 1984. Forest tree nursery manual: Production of bare root seedlings. Martinus Nijhoff/Dr W. Junk publishers, 385p.
- Sagwal, S.S. 1994. Trees on marginal lands. Scientific Publishing Company, Jodhpur.
- Surendran, C., Parthiban, K.T., Vanangamudi, K and Balaji, S. 2000. Vegetative propagation of trees- Principles and Practices, Tamil Nadu Agricultural University, Coimbatore.

Course Outcomes

No.	Upon completion of the course the graduate	Cognitive	PSO
	will be able to	Level	addresse
			d
CO-1	Students will be able to identify forest and other	U, An	PSO-1
	tree species, their distribution, and associated		
	vegetation.		
CO-2	Students will also help to understand the	R, U	PSO-1,2
	components and dynamics of forest or different		
	forest types.		
CO -	The student will also be able to acquire knowledge	Е	PSO-5
3	of soil testing and sustainable management		
	practices.		
CO -4	Students will be able to understand the soil	U, Ap	PSO-1
	processes which maintain, soil -water		
	relationships, nutrients availability and soil		
	fertility in forest soils.		

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: FORESTRY AND PHYTOGEOGRAPHY

Credits: 2:1:2 (Lecture:Tutorial:Practical)

CO No.	СО	PO	PSO	Cognitive	Knowledge	Lecture
				Level	Category	(L)
						/Tutorial
						(T)/
						Practical
						(P)
CO-1	Students will be able	1	1	U,An	F, M	L
	to identify forest and					
	other tree species, their					

	distribution, and associated vegetation.					
CO -2	Students will also help to understand the components and dynamics of forest or different forest types.	2	1,2	R,U	C, P	L/P
CO-3	The student will also be able to acquire knowledge of soil testing and sustainable management practices.	1	5	E	P, M	L
CO -4	Students will be able to understand the human animal conflict	2	1	U,Ap	Р	L/T

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	Р	PO	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
	0	2	0	0	0	0	0	S	S	S	S	S	S	S	S	S
	1		3	4	5	6	7	0	0	0	0	0	0	0	0	0
								1	2	3	4	5	6	7	8	9
CO1	3	-	-	-	-	-	-	3	-	-	-	-	-	-	-	-
CO2	-		-	-	-	-	-		3	-	-	-	-	-	-	-
		3						3								
CO3	3	-	-	-	-	-	-	-	-	-	-	3	-	-	-	-
CO4	-	2	-	-	-	-	-	2	-	-	-	-	-	-	-	-

Correlation Levels:

- a. (NA),
- b. 1 (Mild),
- c. 2 (Moderate)
- d. 3 (High)

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments Final Exam

Mapping of COs to Assessment Rubrics :

	Internal	Assignment	Project	End	Semester
	Exam		Evaluation	Examinations	
CO	\checkmark			√	
1					
CO		\checkmark	√	√	
2					
CO	\checkmark		√	√	
3					
CO	√	\checkmark		√	
4					

Mar Ivanios College (Autonomous)

Discipline	BOTANY											
Course Code	MIUK5SECBOT	305.1										
Course Title	MUSHROOM C	CULTIVAT	ION									
Type of	SEC											
Course												
Semester	V	V										
Academic	300-349	300-349										
Level												
Course	Credit	Lecture	Tutorial	Practical	Total							
Details		per week	per week	per week	Hours/Week							
	3	2 hours	-	2 hours	4							
Pre-												
requisites												
Course	Enable the studen	ts to identify	y edible and	poisonous m	ushrooms							
Summary	Provide hands on	training fo	r the prepara	ation of bed	for mushroom							
	cultivation and sp	pawn produ	ction and st	orage. Help	the students to							
	learn a means	of self-emp	ployment a	nd income	generation by							
	cultivating mushr	ooms .										

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		Introduction to Mushrooms	10
	1	History and introduction: Edible mushrooms and Poisonous mushrooms.Systematic position, morphology, distribution-Vegetative characters	
II		Common edible mushrooms	5

	2	Button mushroom (<i>Agaricus bisporus</i>), Milky mushroom (<i>Calocybe indica</i>), Oyster mushroom (<i>Pleurotus sajorcaju</i>) and paddy straw mushroom (<i>Volvariella volvcea</i>). Activity: Collection of different types of mushrooms							
III		Principles of mushroom cultivation	10						
	3. 4. 5.	 Cultivation: Paddy straw mushroom – substrate, spawn making. Methods – bed method, polythene bag method, field cultivation. Oyster mushroom cultivation –Substrate, spawning, pre-treatment of substrate. Maintenance of mushroom. Diseases, pests and nematodes, weed moulds and their management strategies. Processing - Blanching, steeping, sun drying, canning, pickling, freeze drying, Storage – short term and long term storage. 							
	6.	Storage – short term and long term storage.							
IV		Health benefits of mushroom	5						
	7.	Nutritional and medicinal values of mushrooms. Therapeutic aspects- Antiviral, antibacterial effect, antifungal effect, anti- tumour effect.							
V		Mushroom Marketing							
	8.	Common Indian mushrooms. Production level, economic return, Foreign exchange from Mushroom cultivating countries and international trade							

Practicals (30 hrs.)

1. Sterilization and sanitation of mushroom house, instruments and substrates

2. Preparation of mother culture, media preparation, incubation, incubation and spawn production

3. Cultivation of oyster mushroom using paddy straw/agricultural wastes

4. Visit to a mushroom cultivating laboratory

Suggested Readings

- 1. Pandey B P (1996). A textbook of fungi. Chand and Company NewDelhi.
- 2. Pavel Kalc (2016) Edible mushrooms, Chemical composition and nutritional value, Elseveir book aid international
- Marimuthu, T. et al. (1991). Oster Mushroom. Department of Plant Pathology. Tamil Nadu Agricultural University, Coimbatore.
- Nita Bhal. (2000). Handbook on Mushrooms. 2nd ed. Vol. I and II. Oxford and IBH

Publishing Co. Pvt. Ltd., New Delhi

- 5. Pandey R.K, S. K Ghosh, 1996. A Hand Book on Mushroom Cultivation. Emkey Publications.
- 6. Pathak, V. N. and Yadav, N. (1998). Mushroom Production and Processing Technology.
- Agrobios, Jodhpur.Tewari Pankaj Kapoor, S. C. (1988). Mushroom Cultivation. Mittal Publication, New Delhi.
- Tripathi, D.P. (2005) Mushroom Cultivation, Oxford & IBH Publishing Co. PVT.LTD, New Delhi.
- 9. V.N. Pathak, Nagendra Yadav and Maneesha Gaur, Mushroom Production and Processing Technology/ Vedams Ebooks Pvt Ltd., New Delhi (2000)

No.	Upon completion of the course the graduate will	Cognitive	PSO
	be able to	Level	addresse
			d
CO-	Gain the knowledge of cultivation of different	R, U	PSO-1,2
1	types of edible mushrooms and identify edible		
	types of mushroom		
CO-	Identify and manage the diseases and pests of	R, U,Ap	PSO-2,6
2	mushrooms		
CO3	Acquire hands-on experience through practical	R,An, Ap	PSO-6
	training sessions		

Course Outcomes

CO-	Learn a means of self-employment and income	R,Ap	PSO-1,9
4	generation		

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: MUSHROOM CULTIVATION

Credits: 2:0:2 (Lecture:Tutorial:Practical)

СО	СО	РО	PSO	Cognitive	Knowledg	Lecture
No.				Level	e Category	(L)/Tutori
						al (T)
CO-	Gain the knowledge	1	1,2	R, U,Ap	F,M	T/P
1	of cultivation of					
	different types of					
	edible mushrooms					
	and identify edible					
	types of mushroom					
CO-	Identify and manage	5	2,6	R,An, Ap	С,	С, Р
2	the diseases and		,	, , <u>1</u>	,	,
_	pests of mushrooms					
<u> </u>	-	5	6	D A	C D	CD
CO-	Acquire hands-on	5	6	R,Ap	С, Р	C,P
3	experience through					
	practical training					
	sessions					
CO-	Learn a means of	1	1,9	U,Ap	М	C,M
4	self-employment and					
	income generation					

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

P PO	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
0 2	0	0	0	0	0	S	S	S	S	S	S	S	S	S

	1		3	4	5	6	7	0	0	0	0	0	0	0	0	0
								1	2	3	4	5	6	7	8	9
CO1	3	-	-	-	-	-	-	3	3	-	-	-	-	-	-	-
CO2	-	-	-	-	3	-	-	-	3	-	3	-	3	-	-	-
CO3	-	-	-	-	2	-	-	-	-	-	-	-	3	-	-	-
CO4	3	-	-	-	-	-	-	1	-	-	-	-	-	-	-	3

Correlation Levels:

- a. (NA),
- b. 1 (Mild),
- c. 2 (Moderate)
- d. 3 (High)

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal	Assignment	Project	End Semester
	Exam		Evaluation	Examinations
CO	√	\checkmark		✓
1				
СО		√		✓
2				
CO	√	√	\checkmark	✓
3				
CO	\checkmark	√		✓
4				

SEMESTER VI

Mar Ivanios College (Autonomous)

Discipline	BOTANY								
Course Code	MIUK6DSCBOT	350.1							
Course Title	HORTICULTU	RE AND PI	LANT BRE	EDING					
Type of	DSC								
Course									
Semester	VI								
Academic	350-399								
Level									
Course	Credit	Lecture	Tutorial	Practical	Total				
Details		per week	per week	per week	Hours/Week				
	4	3 hours	-	2 hours	5				
Pre-	Basic interest in h	orticulture							
requisites									
Course	Understanding the	e importanc	e of horticul	lture. Learn t	he methods of				
Summary	plant reproduction	n and propa	gation. Dem	nonstrate pro	ficiency in the				
	techniques and	practices u	ised in the	cultivation,	, propagation,				
	management of h	orticultural	crops, irriga	tion, pest con	ntrol, and crop				
	maintenance. Ex	xploring va	arious caree	er paths in	horticulture,				
	including roles in	research, ex	tension and	industry.					

Detailed Syllabus:

Mod	Uni	Content	Hrs
ule	t		
Ι		Horticulture	7
	1	Introduction, scope and significance; branches of horticulture.	
	2	Irrigation – Surface, sprinkle, drip and gravity irrigation.	
	3	Bonsai-Principle, creating the bonsai. Cultivation and post-	
		harvest management of vegetables and ornamental plants.	
	4	Flower Arrangement- Containers and requirements for flower	
		arrangements Free style, Shallow and Mass arrangement,	
		Japanese – Ikebana, Bouquet and garland making	
		Dry flower arrangement.	
	5	Growth regulators in horticulture: Rooting hormones, Growth	
		promoters, Flower induction, Parthenocarpy.	
II		Plant Propagation	9
	6.	Cuttings- root, stem, leaf	
		Layering - Air layering, Ground layering (Tip, Trench and	
		Compound)	
		Budding – T-Budding,	
		Grafting – Approach grafting, Bridge grafting, whip and tongue	
		grafting.	
		Activity: Should trained to do - Cutting/ layering/	
		grafting/budding	0
III		Plant Breeding	9
	7	History of plant breeding. Concept of centres of origin, their	
		importance with reference to Vavilov's work. Important national	
		and international plant breeding Institutes. Contribution of M.S.	
		Swaminathan.	
	8.	Plant introduction. Agencies of plant introduction in India,	
		Procedure of introduction - Acclimatization - Achievements.	

IV		Breeding Techniques	5							
	9.	Selection - mass selection, pure line selection and clonal selection. Genetic basis of selection methods.								
	10.	Hybridization: Procedure of hybridisation, inter generic, inter specific, inter varietal hybridisation with examples. Composite and synthetic varieties.								
	11.	1. Heterosis and inbreeding depression- genetic basis; male sterility								
	12	Mutation breeding – method – achievements in India								
V		Seed Technology	15							
	13.	Seed Priming and seed Pelletting; Commercial seed Trade;								
		Genetically Modified Seeds; Seed Industry; Seed Certification.								
		Quarantine measures. Plant breeder's rights Act. National								
		Biodiversity Policy. Modern tools for plant breeding: Genetic								
		Engineering and products of genetically modified crops (brief								
		study only).								

PRACTICALS (30 hrs)

- 1. Students must be trained to do Cutting/ layering/ grafting/budding.
- 2. Preparation of nursery bed
- 3. Preparation of potting mixture Potting, repotting.
- 4. Field work in cutting, grafting, budding, layering
- 5. Familiarizing gardening tools and implements
- 6. Visit to a horticulture station
- 7. Techniques of emasculation and hybridization of any bisexual flower.
- 8. Estimation of pollen sterility and fertility percentage
- 9. Visit to plant breeding station. Submit a report

References

- 1. Andiance and Brison. (1971). Propagation Horticultural Plants.
- 2. George Acquaah, (2005) Horticulture: Principles and Practices. Pearson Education, Delhi.
- 3. Hudson, T. Hartmann, Dale K. Kester, Fred T. Davies, Robert L. Geneve, Plant

Propagation, Principles and Practices.

- Kolay, A.K. Basic Concepts of Soil Science. New Age International Publishers, Delhi..
- Nishi Sinha: Gardening in India, Abhinav Publications, New Delhi.Prasad, S., and U. Kumar.
- 6. Green house Management for Horticultural Crops, Agrobios, Jodhpur.
- 7. Allard. R.W. (1960). Principles of Plant breeding, John Wiley & Sons, Inc, New York.
- 8. Chaudhari. H.K. Elementary Principles of Plant breeding, Oxford & IBH Publishers.
- Singh, B.D. (2005). Plant Breeding Principles & methods , Kalyani Publishers, NewDelhi..
- Swaminathan, Gupta & Sinha (1983) Cytogenetics of Crop plants Macmillan India Ltd.

Course Outcomes

No.	Upon completion of the course the graduate	Cognitive	PSO
	will be able to	Level	addresse
			d
CO-1	Able to identify a wide range of horticultural	R,U	PSO-1
	plants, including ornamentals, fruits, vegetables,		
	and herbs		
CO-2	Recognize the importance of horticultural	U, Ap	PSO-5,6
	practices and be able to implement horticultural		
	practices in various plant species.		
CO-3	Familiar with various breeding methods and	U	PSO-6
	techniques used in plant breeding.		
CO-4	Students will enhance their critical thinking skills	U, C	PSO-7
	by analyzing and evaluating scientific literature,		
	experimental results, and real-world challenges in		
	horticulture and plant breeding.		

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: HORTICULTURE AND PLANT BREEDING

CO	СО	РО	PSO	Cognitiv	Knowledge	Lecture
No.				e Level	Category	(L)/Tut orial (T)
CO- 1	Able to identify a wide range of horticultural plants, including ornamentals, fruits, vegetables, and herbs	1	1	R,U	F	L
CO- 2.	Recognize the importance of horticultural practices and be able to implement horticultural practices in various plant species.	5	5,6	U, Ap	F,C	T/P
CO- 3	Familiar with various breeding methods and techniques	5	6	U	F	L
CO- 4	Students will enhance their critical thinking skills by analyzing and evaluating scientific literature, experimental results, and real-world challenges in horticulture and plant breeding.	2	7	U, C	P,M	L/T

Credits: 2:1:2 (Lecture:Tutorial:Practical)

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	Р	?O	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
	0	2	0	0	0	0	0	S	S	S	S	S	S	S	S	S
	1		3	4	5	6	7	0	0	0	0	0	0	0	0	0
								1	2	3	4	5	6	7	8	9
CO1	3	-	-	-	-	-	-	3	-	-	-	-	-	-	-	-
CO2	-	-	-	-	3	-	-	-	-	-	-	3	3	-	-	-
CO3	-	-	-	-	2	-	-	-	-	-	-	-	3	-	-	-
CO4	-	3	-	-	-	-	-	-	-	-	-	-	-	3	-	-

Correlation Levels:

- a. (NA),
- b. 1 (Mild),
- c. 2 (Moderate)
- d. 3 (High)

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	✓	√		✓
CO 2		√		✓
CO 3	✓	√	\checkmark	✓
CO 4	√	\checkmark		✓

Mar Ivanios College (Autonomous)

Discipline	BOTANY									
Course Code	MIUK6 DSCBO	MIUK6 DSCBOT 351.1								
Course Title	PLANT PHYSIC	PLANT PHYSIOLOGY AND PHYTOCHEMISTRY								
Type of	DSC									
Course										
Semester	VI									
Academic	350-399									
Level										
Course	Credit	Lecture	Tutorial	Practical	Total					
Details		per week	per week	per week	Hours/Week					
	4	3 hours	-	2 hours	5					
Pre-requisites	Should have con	Should have completed all courses till Semester V								
Course	Student understar	nds plant lif	e processes							
Summary										

Detailed Syllabus:

Module	Unit	Content	Hrs				
I		Plant -Water Relations	5				
	1	Water relations of plants: Importance of water to plant life					
	2	Absorption of water- organs of absorption, root and root					
		hair. Physical aspects of					
		absorption- imbibition, diffusion and osmosis. Plant cell as					
		an osmotic system;					
		water potential and osmotic potential. Plasmolysis and its					
		significance, practical					
		applications. Mechanism of water absorption - active and					
		passive absorption,					

		root pressure. Pathway of water across root cells.	
	3	b. Ascent of sap- vital and physical theories.	
	4	c. Loss of water from plants: transpiration-cuticular,	
		lenticular and stomatal	
		mechanism, Theories - starch sugar hypothesis, potassium -	
		ion theory.	
	5	Transpiration, Significance, Guttation, anti-transpirants,	
		factors affecting transpiration.	
II		PHOTOSYNTHESIS	10
	6	Introduction, significance and general equation;	
		Photosynthetic	
		apparatus, structure and function of chloroplast,	
		quantasomes - solar spectrum and	
		its importance - Fluorescence and phosphorescence; Red	
		drop, Emerson effect.	
	7	Two pigment systems, raw material for photosynthesis,	
		Mechanism of	
		Photosynthesis- Light reaction - cyclic and non - cyclic	
		photophosphorylation, Hill	
		Reaction.	
	8	Dark reaction: Calvin cycle; Comparative study of C3, C4	
		and CAM plants, Photorespiration.	
	9	Factors affecting photosynthesis - Law of limiting factor.	
III		RESPIRATION	10
	10	Introduction, definition and significance and general	
		equation, Respiratory substrate	
	11	Types of respiration- aerobic and anaerobic.	
	12	Aerobic respiration - glycolysis, Krebs's cycle, terminal	
		oxidation.	
	13	Anaerobic respiration – fermentation: alcoholic and lactic	
		acid fermentation.	
	14	Energy relation of respiration - R Q and its significance,	

		Factors affecting respiration	
	15		
	15	Nitrogen metabolism: Biological nitrogen fixation –	
		symbiotic and asymbiotic. Nitrogen fixation by blue green	
		algae - rotation of crops. Nif genes- Leg haemoglobin.	
		Nitrate and ammonia assimilation.	
IV		Plant Growth and Response	5
	16	Growth: Phases of growth- vegetative and reproductive	
		growth, growth curves-J and S shaped	
	17	Plant growth regulators - Auxins, Gibberellins, Cytokinin,	
		Ethylene, Abscisic acid, synthetic plant hormones - practical	
		applications.	
	18	Senescence and abscission, Photoperiodism	
	19	Vernalization - phytochrome and its significance.	
		Physiology of bud and seed	
		dormancy, germination.	
	20	Plant movements: Tropic and nastic movements. Circadian	
		rhythm and biological clock.	
	21	Stress physiology: water stress, salt stress.	
V		Mineral nutrition	15
	22	Gross chemical analysis of the plant body, ash analysis,	
		criteria for	
		essentiality of elements.	
	23	macro and micro elements, role of essential elements and	
		their deficiency symptoms.	
	24	Culture methods - sand culture, hydroponics and aeroponics.	
	25	Mechanism of mineral absorption (a) passive absorption-	
		ion exchange	
		and Donnan's equilibrium (b) active absorption- carrier	
		concept, Lundegardh	
		hypothesis.	
		<u> </u>	

Practicals (30hrs)

1. Water potential of onion peel / *Rhoeo* peel by plasmolytic method.

2. Imbibition of water by different types of seeds.

- 3. Effect of temperature on permeability.
- 4. Papaya petiole osmoscope.
- 5. Determination of stomatal index.
- 6. Determination of water absorption and transpiration ratio.
- 7. Measurement of rate of transpiration using Ganong's potometer or Farmer's potometer.
- 8. Evolution of oxygen during photosynthesis.
- 9. Light screen experiment
- 10. Measurement of photosynthesis by Wilmott'sbubbler.
- 11. Evolution of CO2 during respiration.
- 12. Ganong's respirometer and measurement of R.Q
- 13. Alcoholic fermentation using Kuhn's fermentation vessel
- 14. Geotropism using clinostat (Excluded from practical exam)
- 15. Measurement of growth using Arc auxanometer. (Excluded from practical exam)

References:

- 1. Devlin RM &Witham FH(1986). Plant Physiology 4thEdition, C B S publishers.
- 2. InamA, Sahay S,Akhtar A(2016).Experiments in Plant Physiology, Biochemistry and Ecology, Jaya Publishing House, N Delhi
- Kochhar P. L. & Krishnamoorthy H. N. (1964). Plant Physiology. Atmaram &Sons- Delhi, Lucknow
- Kumar & Purohit (1996). Plant Physiology Fundamentals and Applications Agrobotanical Publications
- 5. Malik C. P. & Srivastava A. K. (2005). Textbook of Plant Physiology, KalyaniPublishers- NewDelhi
- 6. Noggle G R & Fritz G J (1983). Introductory Plant physiology 2nd Edition,Prentice Hall of India.
- 7. Pandey S.N. & Sinha B. K. (1996) Plant physiology 3rd Edition, Vikas publishingHouse-NewDelhi.
- 8. Purohit. S.S(2003). Plant physiology, Student Edition, Jodhpur
- 9. Salisbury F. B. & Ross C. W.4th Edition (2005) Plant physiology, Wadsworth publishing company.
- 10. Sinha RK (2004). Modern Plant physiology, Narosa PublishingHouse, NewDelhi
- 11. Verma V (2016) Plant Physiology, 2nd Edition, Athena Academic, London

 William G. Hopkins (2008) Introduction to Plant Physiology 4th Edition, JohnWiley & Sons, NewYork

Course Outcomes

No.	Upon completion of the course the graduate	Cognitive	PSO
	will be able to	Level	addresse
			d
1	Explain fundamental physiological processes in	U	PSO-1
	plants, including photosynthesis, respiration,		
	transpiration, mineral nutrition, hormone		
	signalling, and plant-water relations.		
2	Design, conduct, and analyze experiments in plant	А	PSO-1,6
	physiology, using appropriate techniques and		
	instrumentation, and interpret experimental results		
	to draw conclusions about plant physiological		
	processes.		
3	Apply their understanding of plant physiology	Ар	PSO-1
	principles to solve problems related to plant		
	growth, development, adaptation, and responses to		
	environmental challenges, both in theoretical and		
	practical contexts.		
4	Critically evaluate scientific literature in plant	Е	PSO-2
	physiology, including research articles, reviews,		
	and experimental data, and synthesize information		
	to develop informed perspectives on current topics		
	and research questions.		

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

CO	СО	Р	PS	Cognit	Knowle	Lecture
No.		0	0	ive	dge	(L) /
				Level	Catego	Tutorial
					ry	(T)
						Practical
						(P)
СО	Explain fundamental	1,	1	U	F	L/T
1	physiological processes in plants,	2				
	including photosynthesis,					
	respiration, transpiration, mineral					
	nutrition, hormone signalling, and					
	plant-water relations.					
СО	Design, conduct, and analyze	1,	1,6	An	Р	Р
2	experiments in plant physiology,	5				
	using appropriate techniques and					
	instrumentation, and interpret					
	experimental results to draw					
	conclusions about plant					
	physiological processes.					
CO	Apply their understanding of plant	2	1	Ар	С	L
3	physiology principles to solve					Р
	problems related to plant growth,					
	development, adaptation, and					
	responses to environmental					
	challenges, both in theoretical and					
	practical contexts.					
СО	Critically evaluate scientific	6	2	Е	М	L
4	literature in plant physiology,					
	including research articles,					
	reviews, and experimental data,					
	and synthesize information to					
	develop informed perspectives on					
	current topics and research					

questions.					
------------	--	--	--	--	--

F-Factual, C- Conceptual, P-Procedural, M- Meta cognitive

Mapping of COs with PSOs and POs :

	Р	?O	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
	0	2	0	0	0	0	0	S	S	S	S	S	S	S	S	S
	1		3	4	5	6	7	0	0	0	0	0	0	0	0	0
								1	2	3	4	5	6	7	8	9
CO1	3	3	-	-	-	-	-	3	-	-	-	-	-	-	-	-
CO2	3	-	-	-	3	-	-	3	-	-	-	-	3	-	-	-
CO3	-	2	-	-	-	-	-	3	-	-	-	-	-	-	-	-
CO4	-	-	-	-	-	3	-	-	3	-	-	-	-	-	-	-

Correlation Levels:

- a. (NA),
- b. 1 (Mild),
- c. 2 (Moderate)
- d. 3 (High)

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		

Mar Ivanios College (Autonomous)

Discipline	BOTANY								
Course Code	MIUK6DSCBOT	MIUK6DSCBOT 352.1							
Course Title	MOLECULAR	MOLECULAR BIOLOGY AND BIOINFORMATICS							
Type of	DSC								
Course									
Semester	VI								
Academic	300 - 349								
Level									
Course	Credit	Lecture	Tutorial	Practical	Total				
Details		per week	per week	per week	Hours/Week				
	4	3 hours	-	2 hours	5				
Pre-	A good understa	nding of b	asics in gen	etics and ce	ll biology are				
requisites	vitally important.								
Course	The student will	be able to u	nderstand th	e structural o	organisation of				
Summary	cells and the func	ctions of the	organelles.	The student	will be able to				
	differentiate betw	een plant a	nd animal ce	ells and to an	alyse different				
	stages of mitosis	and meiosis	s. The stude	nt can analys	e the structure				
	and function of	f both DN	NA and R	NA. Studen	ts will learn				
	fundamental conc	cepts, tools,	and technic	ues used in	bioinformatics				
	research, with a	focus on g	genome ana	lysis, sequer	nce alignment,				
	structural biology	, and data m	nining.						
	•								

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι	S	tructure and Organization of Nucleus and Nuclear Material	6

	1	 Nucleic acids: Carriers of genetic information, Experimental evidence- Griffith's experiment on bacterial transformation, Avery's experiment, Hershey- Chase experiment. Types of genetic material, denaturation and renaturation, cot curves, Organization of DNA and structure of RNA-Prokaryotes, Viruses, Eukaryotes 	
II		Genetic Materials	6
	3	Molecular Structure of DNA, Watson and Crick double helical model, Salient features of double helix, biological significance of double helical model of DNA, Chargaff's rule	
	4	Forms of DNA- A, B and Z DNA, Satellite and repetitive DNA, chloroplast DNA, Mitochondrial DNA. Structure, Properties and functions of RNA- mRNA, tRNA, rRNA, SnRNA and microRNA	
III		Replication of DNA	9
	5	General principles –semi discontinuous replication, Semi conservative model- Meselson and Stahl experiment, leading strand, lagging strand synthesis, Okazaki fragments, replication fork and origin of replication, unidirectional and bidirectional replication, replisome. Role of enzymes- Topoisomerase, DNA polymerases,	
		Primases, Helicase, Ligase, DNA repairing mechanism – photoreactivation, Replication of DNA in eukaryotes (brief account only)	
	7	Transcription in prokaryotes and eukaryotes, RNA modifications- introns, exons, removal of introns, spliceosome Ribozymes, exon shuffling; RNA editing and mRNA transport. Translation (Prokaryotes and eukaryotes), Central dogma of molecular biology.	
	8	Genetic code, Wobble hypothesis, lac- operon, steroids and peptide hormones; Gene silencing transcriptional gene regulation in eukaryotes (brief account)- promoters, enhancers, RNA interference	

IV		Bioinformatics	9					
	9	Introduction: Definition, Origin of concept of Bioinformatics;						
		Brief history, Branches of Bioinformatics, Aim, Scope and						
		Research areas of Bioinformatics. Importance of						
		bioinformatics; Wet lab and Web lab.						
	10	Basics of 'omes' and 'omics'-Genomics, Proteomics &						
		Comparative genomics						
	11	Introduction, Biological sequence databases, NCBI, Tools and						
		databases of NCBI, sequence submission to NCBI.						
		Classification format of Biological Databases: Nucleic acid						
		databases (EMBL, Gen Bank, DDBJ); Protein sequence						
		databases. (PIR, SWISS PROT, UNIPROT); Protein structure						
		databank- (PDB), Model organism databases and Biodiversity						
		data bases (brief account only); Biological database retrieval						
		systems-SRS, ENTREZ.						
	12	Gene sequence, Homology searches- Genetic map and						
		physical map; Sequence analysis and alignment- introduction						
		and concept of alignment. Pair wise sequence alignment,						
		multiple sequence alignment (MSA), Sequence Alignment						
		Tools: BLAST- number of hits and hit extension, CLUSTAL						
		X - Scoring Matrices- PAM and BLOSUM.						
V		Bioinformatics tools and its applications	15					
	13	Bioinformatics in relation to Biomolecular structure;						
		Molecular visualization tool- Rasmol						
	14	Phylogenetic analysis: Phylogenetic tree- components;						
		Molecular phylogeny- advantages; Methods of Phylogeny-						
		Distance matrix, Parsimony. Software for Phylogenetic tree						
		construction- PHYLIP and PHYLOBLAST.						
	15	Applications of Bioinformatics: Structural Bioinformatics in						
		Drug design and drug discovery, Microbial genome						
		applications, Gene therapy, Personalized medicine, Evolution,						
		antibiotic resistant, preventive health care, bioinformatics tool						
		and Crop improvement.						

Practicals (30 Hrs)

- 1. Photographs establishing nucleic acid as genetic material (Messelson and Stahl's, Avery et.al., Griffith's, Hershey & Chase's experiments
- 2. Nucleic acid and protein databases- FASTA files
- 3. Sequence retrieval from databases- SRS, ENTREZ
- 4. Sequence alignment- BLAST, CLUSTAL X
- 5. Sequence homology and Gene annotation- physical map and genetic map
- 6. Construction of phylogenetic tree- PHYLIP, PHYLOBLAST.
 - •

• Suggested References

- Baxevanis, A.D. and Ouellette B.F.F. (2001) Bioinformatics A Practical Guide to the Analysis of Genes and Proteins. 2nd Edition John Wiley & Sons,Inc.
- Ghosh Z. and Bibekanand M. (2008) Bioinformatics: Principles and Applications. Oxford University Press.
- David Mount (2004) Bioinformatics: Sequence and Genome Analysis, 2nd Edition Cold spring harbor press.
- Durbin (2007) Biological Sequence Analysis. Cambridge University Press India Pvt.Ltd.
- Pevsner J. (2009). Bioinformatics and Functional Genomics. II Edition. Wiley-Blackwell.
- Jin Xiong, (2007). Essential Bioinformatics. Cambridge University Press India Pvt. Ltd.
- Higgs, (2005). Bioinformatics and Molecular evolution. Ane Books India Pvt. Ltd.
- Campbell A. M., Heyer L. J. (2006) Discovering Genomics, Proteomics and Bioinformatics. II Edition. Benjamin Cummings.
- 9. Xiong (2006). Essential Bioinformatics. Cambridge University Press.
- 10. Marketa J Zvelebil (2007). Understanding Bioinformatics. Garland Science.
- 11. Shui Quing Ye (2019). Bioinformatics: A practical Approach. CRC Press.
- 12. Anna Tramontano (2018). Introduction to Bioinformatics. CRC Press.
- 13. Mani K and Vijayaraj N (2002). Bioinformatics for beginners. Kalaikathir Achchagam.

- 14. De Robertis, E.D.P and Robertis, E.M.P (1991) Cell and molecular biology. Scientific Americanbooks.
- Janet Iwasa and Wallace Marshall. (2016). Karp's Cell and Molecular Biology: Concepts and Experiments. 8th Edition. John Wiley & Sons. Inc
- 16. Twymann, R.M. (1998) Advanced molecular biology, Viva books NewDelhi.

•

Course Outcomes

No.	Upon completion of the course the graduate	Cognitive	PSO
	will be able to	Level	addresse
			d
CO-1	Understand and analyse the genetic makeup of an	U, A	1
	organism and have an elementary idea of different		
	forms of DNA and RNA		
CO-2	Understand how does DNA replication occurs in	R, U	1
	prokaryotes and eukaryotes.		
CO-3	Evaluate the importance of bioinformatics in	U, An	5,6
	modern biological research, particularly in		
	understanding complex biological systems and		
	developing therapeutic interventions.		
CO -4	Implement bioinformatics approaches in	U, An	3,6
	structural bioinformatics to identify potential drug		
	targets, predict protein-ligand interactions, analyze		
	microbial genomes for drug resistance genes, and		
	develop strategies for personalized medicine and		
	crop improvement.		

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: MOLECULAR BIOLOGY AND BIOINFORMATICS

Credits: 2:1:2 (Lecture:Tutorial:Practical)

CO	СО	РО	PS	Cogniti	Knowled	Lecture
No.			0	ve	ge	(L)/Tutori
				Level	Categor	al (T)/
					У	Practical
						(P)
1	Understand and analyse the	1	1	U, A	F, C	L/T
	genetic makeup of an					
	organism and have an					
	elementary idea of different					
	forms of DNA and RNA					
2	Understand how does DNA	1,2	1	R, U	F, C	L
	replication occurs in					
	prokaryotes and eukaryotes.					
3	Evaluate the importance of	2	5,6	U, An	P, C	L
	bioinformatics in modern					
	biological research,					
	particularly in understanding					
	complex biological systems					
	and developing therapeutic					
	interventions.					
4	Implement bioinformatics	5,6	3,6	U, An	Р, М	L/T/P
	approaches in structural					
	bioinformatics to identify					
	potential drug targets, predict					
	protein-ligand interactions,					

analyze microbial genomes		
for drug resistance genes,		
and develop strategies for		
personalized medicine and		
crop improvement.		

F-Factual. C-	· Conceptual.	P-Procedural.	M-Metacognitive
, _		,	,

Mapping of COs with PSOs and POs :

	P	PO	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	P
	0	2	0	0	0	0	0	S	S	S	S	S	S	S	S	S
	1		3	4	5	6	7	0	0	0	0	0	0	0	0	0
								1	2	3	4	5	6	7	8	9
CO1	3	-	-	-	-	-	-	3	-	-	-	-	-	-	-	-
CO2	3		-	-	-	-	-		-	-	3	-	-	-	-	-
		3						3								
CO3	-	2	-	-	-	-	-	-	-	-	-	3	3	-	-	-
CO4	-	-	-	-	2	3	-	-	-	2	-	-	3	-	-	-
																3

Correlation Levels:

a. - (NA),

- b. 1 (Mild),
- c. 2 (Moderate)
- d. 3 (High)

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal	Assignment	Project	End Semester
	Exam		Evaluation	Examinations
CO 1	√	√		✓
CO 2	\checkmark	√		\checkmark
CO 3	√	√		\checkmark
CO 4			\checkmark	\checkmark

Mapping of COs to Assessment Rubrics :

Mar Ivanios College (Autonomous)

Discipline	BOTANY									
Course Code	MIUK6DSEBOT	353.1								
Course Title	FORENSIC BO	ΓΑΝΥ								
Type of	DSE	DSE								
Course										
Semester	VI									
Academic	350 - 399	350 - 399								
Level										
Course	Credit	Lecture	Tutorial	Practical	Total					
Details		per week	per week	per week	Hours/Week					
	4	3 hours	-	2 hours	5					
Pre-	1. Students should	d complete ı	up to semeste	er V						
requisites										
Course	Course is designe	d to familia	rize students	s to professio	nal practice in					
Summary	the field.									

Detailed Syllabus:

Module	Unit	Content	Hrs							
I		INTRODUCTION	4							
	1	1 Definition, Introduction, Different divisions and units of								
		Forensic Science Laboratory, Legends and their contributions								
		in the field of forensic science.								
	2	2 The Bharatiya Nyaya Sanhita (2023)								
	3	Case studies and other works from the forensic literature								
II		FORENSIC BOTANY								

	4	Pollen calendar, Pollen for Geolocation and Time of Death Estimation								
	5	Forensic mycology - spores, fruiting bodies, botanical decomposition, site conditions								
	6	Analysis of diatoms								
	7	Considerations while Plant Evidence Collection and Preservation and digitalizing evidence								
	8	Activity- Prepare micrographs of pollen from local flora								
III		MOLECULAR TECHNIQUES	15							
	9	Polymerase Chain Reaction (PCR), Short Tandem Repeat								
		(STR) Analysis, Single Nucleotide Polymorphism (SNP)								
		Analysis, Mitochondrial DNA (mtDNA) Sequencing, Y-								
		Chromosome Analysis:								
		Next-Generation Sequencing (NGS), Real-Time PCR (qPCR),								
		DNA Methylation Analysis, RNA Analysis, High-Resolution								
		Melting Analysis (HRM)								
	10	DNA Extraction procedure from various samples- (Blood,								
		Saliva, Seminal fluid, Bone, tissues and inert items.)								
IV		AGENCIES	5							
	11	National and International Agencies- Central Bureau of								
		Investigation (CBI), National Crime Records Bureau (NCRB),								
		Central Forensic Science Laboratory (CFSL), International								
		Criminal Police Organization (INTERPOL), International								
		Society for Forensic Genetics (ISFG), United Nations Office								
		on Drugs and Crime (UNODC)								
V		FORENSIC PLANT TAXONOMY	15							
	12	Plants as poison, Pollen and spore examination.								
	13	Green villans – plants as instruments of crime.								
	14	Activity: Documentary preparation on previous case histories								
		on notorious plant involvements in criminal cases.								

Practicals (30 Hrs)

- **1.** Acetolysis of pollen grains
- 2. Staining of fungal hyphae using aniline blue.
- 3. Training in photography of crime sites

4. Preparation of slides photographing diatoms

References

1.Adler F. (5th Edition) (2004), Criminology, McGraw-Hill

2. Ashraf Mozayani, Carla Noziglia. The Forensic Laboratory Handbook Procedures and Practice, 2nd edition, Humana Press 2010

3. Barak G. (1998), Integrative Criminology, Ashgate Pub Ltd.

4. Barnett P.D. (2001), Ethics in Forensic Science: Professional Standards for the Practice of Criminalistics, CRC press .

5. Bridges (1942), Practical Finger Printing, Funk and Washalls Co. New York.

6. Cooke G. (1980), The role of Forensic Psychologist, Thomas Publication.

7. Gaensselen R., Harris H. and Lee H. (2007), Introduction to Forensic Science and Criminalistics, McGraw-Hill Education.

8. Haward R.C.L. (1981), Forensic Psychology, Batsford Academic and Educational.

9. Hess A.K. and Weiner I.B. (2nd Edition) (1999), Handbook of Forensic Psychology, Wiley, John & Sons, Incorporated

10. James S.H and Nordby J.J. (2003), Forensic Science: An introduction to scientific and investigative techniques, CRC Press, USA.

11. Johnson E.H. (4th Edition) (1978), Crime, Correction and Society, Dorsey Press.

12. Kirk P.L. (1953), Criminal Investigation: physical evidence and the police laboratory, Interscience Publisher Inc. New York.

13. Mehta M. K. (1980), Identification of Thumb Impression & Cross Examination of Finger Prints, N. M. Tripathi (P) Ltd. Bombay.

Course Outcomes

No.	Upon completion of the course the graduate	Cognitive	PSO
	will be able to	Level	addresse
			d
CO-1	Knowledge of Plant Evidence Collection and	U	1
	Preservation		
CO-2	Understanding of Forensic Palynology and Plant	U	1,6

	Microscopy		
CO-3	Critically assess research literature, case reports,	U, E	1,6
	and scientific findings		

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: FORENSIC BOTANY

Credits:2:1:2 (Lecture: Tutorial: Practical)

CO	СО	РО	PSO	Cognitiv	Knowled	Lecture
No.				e	ge	(L)
				Level	Category	/Tutori
						al (T)/
						Practic
						al (P)
CO-1	Knowledge of	1			F	L
	Plant Evidence		1	U		
	Collection and					
	Preservation					
CO-2	Understanding	1,5			С	Т
	of Forensic		1,6	U		
	Palynology					
	and Plant					
	Microscopy					
CO-3	Critically	1,6			М	L/P
	assess research					
	literature, case		1,6	U, E		
	reports, and					
	scientific					
	findings					

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs:

	Р	PO	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
	0	2	0	0	0	0	0	S	S	S	S	S	S	S	S	S
	1		3	4	5	6	7	0	0	0	0	0	0	0	0	0
								1	2	3	4	5	6	7	8	9
CO1	3	-	-	-	-	-	-	3	-	-	-	-	-	-	-	-
CO2	3	-	-	-	3	-	-		-	-	3	-	3	-	-	-
								3								
CO3	3	-	-	-	-	3	-	3	-	-	-	3	3	-	-	-

Correlation Levels:

- a. (NA),
- b. 1 (Mild),
- c. 2 (Moderate)
- d. 3 (High)

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	√	\checkmark	√
СО	√	√	√	√
2 CO			\checkmark	√
3				

Mar Ivanios College (Autonomous)

Discipline	BOTANY					
Course Code	MIUK6DSEBOT 354.1					
Course Title	RESEARCH METHODOLOGY AND BIOSTATISTICS					
Type of	DSE					
Course						
Semester	VI					
Academic	350-399					
Level						
Course	Credit	Lecture	Tutorial	Practical	Total	
Details		per week	per week	per week	Hours/Week	
	4	3 hours	-	2 hours	5	
Pre-	Cleared the requirements upto V semester					
requisites						
Course	Equip students with essential tools and skills needed to conduct					
Summary	rigorous and ethical research in the life sciences, preparing them for					
	careers in academia, industry, healthcare or public health.					

Detailed Syllabus

Module	Unit	Content	Hrs		
I		Research Methodology			
	1	Introduction; Need for research; Stages of Research – Definition of problem, execution of the problem, interpretation of results			
	2	Characteristics of Research, Types of research- Qualitative & quantitative.			

	3	Experimental design, components of experimental designs-				
		Randomized blocks, completely randomized designs				
	4	Activity- a) Design a hypothesis and its alternative hypothesis				
		b) Design an RBD experiment and solve it. (Example- A				
		pharmaceutical company wants to compare the effectiveness				
		of four different drug formulations in treating a particular				
		medical condition. However, patient responses may vary due				
		to factors such as age and gender. Design an RBD experiment				
		to control for these potential sources of variability and				
		accurately assess the efficacy of the drug formulations.				
II		Preparation of a project report	5			
	5	Data analysis and consolidation of photographs, illustrations,				
		tables and graphs				
	6	Title, introduction, review of literature, materials and				
		methods, results, discussions, summary, references,				
		acknowledgements; Bibliography - Method of citing and				
		arrangement of references - Reference management software				
		– Mendeley, EndNote				
	7	Activity – Explore Google scholar platform and compile				
		latest reference source on any selected topic of student's				
		choice and present it in APA and MLA format.				
III		Basics of Biostatistics	9			
	8	Biostatistics - definition an outline of statistical methods -				
		Statistical				
		terms and symbols, basic principles; Variables -types,				
		measurements;				
		significance, limitations and uses of statistics.				
	9	Distribution of data in Biology -Nature and types - Typical				
		examples,				
		Data collection- primary and secondary; methods for				
		collection of data;				
		Data presentation- tables, diagrams (bar & pie diagrams) and				
		Graphs (Histogram, frequency polygon, frequency curve &				

		Ogives).	
	10	Samples and sampling methods- random sampling and non-	
		random	
		sampling.	
	11	Activity – Make a questionnaire for data collection using	
		google forms	
IV		Descriptive statistics	11
	12	Statistical treatment of data: frequency distribution; Measures	
		of central	
		tendencies (mean, median, mode- merits and demerits),	
		Measures of	
		dispersion (range, mean deviation, variance, standard	
		deviation, standard	
		error, skewness and kurtosis, quartile deviation -merits and	
		demerits); coefficient of variation.	
	13	Correlation - types and methods of correlation-Pearson's	
		correlation,	
		regression analysis-types, simple regression equation, fitting	
		prediction,	
		Differences and similarities of correlation and regression	
		analysis.	
V		Inferential statistics	15
	14	Hypothesis - testing hypothesis - student's t' test (paired and	
		unpaired), chi square test, F-test (ANOVA-one-way ANOVA	
		and two-way ANOVA), probability test.	
	15	Application of biostatistics-Public health, Quantitative	
		genetics, Expression data, other studies; Scope of biostatistics.	
		<u> </u>	

Practicals (30 Hrs)

- 1. Tabulation and presentation of data- Diagrams and Graphs.
- 2. Calculation of Frequency distribution, measures of central tendancy and
- measures of dispersion, coefficient of variation.
- 3. Calculation of correlation coefficient- Pearson's and regression analysis.

- 4. Statistical inference hypothesis student 't' test chi square test, F-test (ANOVA-one-way ANOVA and two-way ANOVA), probability test.
- 5. Uses of software in biostatistics- Excel, Instat, SPSS, sigmaplot and R software.

Suggested readings

- 1. Gurumani N. (2006) Research Methodology For Biological Sciences, MJP Publ.
- Kothari C R & Garg C (2014) Research methodology methods and techniques, New Age international publishers
- Rastogi, Veer Bala.; Fundamentals of Biostatistics; 2nd edition, New Delhi : Ane Books India 2008.
- Bailey T.J. (1995) Statistical Methods in Biology (3rd Edition) Cambridge University Press India Pvt Ltd.
- Elizabeth Allman (2004). Mathematical Methods in Biology, Cambridge University Press India Pvt. Ltd
- 6. Mann, S. P. (2016). Introductory Statistics, 9th edition. Hoboken, NJ, Jone Wiley and Sons Inc.
- 7. Khan and Khanum (1994). Fundamentals of Biostatistics, Saras Publications
- Marcello Pagano and Kimberlee Gauvreau (2018) Principles of Biostatistics 2nd Edition CRC Press, Chapman & Hall
- Khan, I.A., Khanum, A. (2004). Fundamentals of Biostatistics, 5th edition. Hyderabad: Ukaaz publications
- Zar, J.H. (2014). Biostatistical Analysis, 5th edition. London, London: Pearson Publication.
- 11. Saha I and Paul B (2016) Essentials of Bio-statistics 2ndEdition Academic Publishers
- Stephen W. Looney (2009). Biostatistical Methods, Humana Press, Springer International Edn.
- 13. Veer Bala Rastogi (2008). Fundamentals of Biostatistics, Ane Books Pvt. Ltd
- 14. Pandey, M. (2015). Biostatistics Basic and Advanced. New Delhi, Delhi: M V Learning.
- Sundar Rao, P.S.S., Richards, (1996). An introduction to Biostatistics, 3rd edition.
 Vellore, Tamil Nadu: J. Christian Medical College.

Course Outcomes

No.	Upon completion of the course the graduate will	Cognitive	PSO
	be able to	Level	addresse
			d
CO-	Students will develop the ability to critically evaluate	An, E	PSO -1
1	research studies, including assessing the validity,		
	reliability, and generalizability of research findings.		
CO-	Learn various data collection techniques, such as	U, Ap	PSO -2
2	surveys, interviews, observations, and experiments,		
	and understand their strengths, limitations, and		
	appropriate applications.		
CO-	Enhance their ability to effectively communicate	Ap, C	PSO -1
3	research findings through written reports,		
	presentations, and academic publications		
CO-	Students will appreciate the interdisciplinary nature	U, An	PSO -7
4	of research methodologies and understand how		
	different disciplines approach research questions and		
	problems.		

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: RESEARCH METHODOLOGY AND BIOSTATISTICS

Credits:2:1:2 (Lecture:Tutorial:Practical)

СО	СО	РО	PSO	Cognitive	Knowledge	Lecture
No.				Level	Category	(L)
						/Tutorial
						(T)/
						Practical
						(P)
CO-1	Students will develop the	1	1		F	L
	ability to critically evaluate					

	research studies, including assessing the validity, reliability and generalizability of research findings.			An, E		
CO-2	Learn various data collection techniques, such as surveys, interviews, observations, and experiments, and understand their strengths, limitations, and appropriate applications.	1,2	2	U, Ap	F, P	T/P
CO-3	Enhancetheirabilitytoeffectivelycommunicateresearchfindingsthroughwrittenreports,presentationsand academic publications	6	1	Ap, C	С	Ρ
CO-4	Students will appreciate the interdisciplinary nature of research methodologies and understand how different disciplines approach research questions and problems.	6	7	U, An	F, M	L

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

	Р	?O	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
	0	2	0	0	0	0	0	S	S	S	S	S	S	S	S	S
	1		3	4	5	6	7	0	0	0	0	0	0	0	0	0
								1	2	3	4	5	6	7	8	9
CO1	3	-	-	-	-	-	-	3	-	-	-	-	-	-	-	-
CO2	3		-	-	-	-	-		2	-	3	-	-	-	-	-
		3														
CO3	-	-	-	-	-	3	-	1	-	-	-	3	-	-	-	-

Mapping of COs with PSOs and POs:

CO4	-	-	-	-	-	3	-	-	-	-	-	-	-	3	-	-

Correlation Levels:

- a (NA),
- b 1 (Mild),
- c 2 (Moderate)
- i. 3 (High)

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics:

	Internal	Assignment	Project	End Semester
	Exam		Evaluation	Examinations
СО	\checkmark	√		
1				
CO		√		√
2				
CO		✓	\checkmark	
3				
СО	\checkmark		\checkmark	
4				

Mar Ivanios College (Autonomous)

Discipline	BOTANY				
Course	MIUK6SECBOT 35	5.1			
Code					
Course	PLANT FIBRE TE	CHNOLO	GY		
Title					
Type of	SEC				
Course					
Semester	VI				
Academic	350-399				
Level					
Course	Credit	Lecture	Tutorial	Practical	Total
Details		per week	per week	per week	Hours/Week
	4	3 hours	-	2 hours	5
Pre-	Needs Curiosity and	l interest.			
requisites					
Course	By the end of the c	course, stud	ents will be	able know a	about different
Summary	types of fibers and d	yes.			

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		Textile fbres Introduction	8
	1	a) Classification of textile fibres according to their nature and origin, b) essential and desirable properties of textile fibres, c) staple fibre and continuous filaments, d) comparision of natural and man made fibres.	
	2	Natural fibres: A) Vegetable (bast, leaf and seed fibres) B. cotton: concept of varieties; definition of grading, distinctive	

	3	properties and end uses, C) jute:- varieties, distinctive properties and end uses, F) flax and pineapple fibres:- brief introduction and uses. Texturing: Introduction, purpose, bulked and textured yarns, methods of texturing thermoplastic and non-thermoplastic yarns, basic principles, feed material characteristics-study of twist-set- detwist, false twist, edge crimp, stuffer box crimp; knit de-knit techniques of texturing and the techniques of modified stretch yarn;, properties and uses of textured and bulked yarns. Dyeing:- Process	
II		Textile Technology	7
	5	Staple fibre Spinning (brief idea): Introduction, raw material,	
		ginning, opening, cleaning, blending, equalizing, drafting,	
		yarn formation, different systems of spinning.	
	6	Introductory concept of Ginning: Cotton ginning and bailing-	
		object of ginning, different methods and their limitations,	
		description of modern ginning machine, ginning performance	
		on yarn quality, impurities	
	7	Opening and Cleaning: Introduction, the need for opening	
		and cleaning, type of opening and degree of opening,	
		impurities to be eliminated.	
		Blending: The purpose of blending, selection of blend	
		constituents, measures of blending, blending procedures- merits and demerits.	
		Blow Room: a) Introduction, basic operations in the blow	
		room, opening, cleaning, dust removal, even feed of material	
		to card, blow room line as a sequence of machines need for	
		various types of machines; b) Components of blow room	
		machines: feed apparatus- feed with two clamping cylinders,	
		feed with a roller and pedals;	
	8	Carding: a) Introduction, object of carding, operating	
	Ŭ	principle, various actions in carding; different types of design	
		(cotton card, woolen card, worsted card, jute card).	
		b) Operating regions of the card, feed of material,	

		requirements, material or flock feeding.	
		c) Card clothing: choice of clothing, classification (flexible,	
		semirigid, metallic)	
		d) Handling sliver: laying down in cans, coiler mechanisms.,	
		can changing.	
		e) Auto levelling equipment: basic, classification, principles	
		of short-term auto levelling regulation at the delivery,	
		f) Carding maintenance: stripping the clothing, burnishing the	
		clothing, grinding of clothing.	
III		Fabric Formation	7
	9	Introduction: a) The fabric, b) methods of fabric formation, c)	
		phases in the formation of fabric by weaving, d) a technical	
		introduction to weaving: basic motions, principal mechanisms	
		of a loom, path of warp through a loom, motion of the healds,	
		sley and shuttle, idea of other loom mechanisms.	
	10	Preparatory processes: Introduction, sequence of processes.	
		Single and multiend winding. Single –end Warp Winding-a)	
		Introduction, b) need for winding, c) cleaning, clearing, d)	
		different types of packages and package build-parallel, near	
		parallel wind & cross wound packages, standard package	
		formats (cop, cone, cheese, pineapple etc.)	
	11	winding techniques-random, precision and combined,	
		winding parameters: winding rate, wind and traverse ratio,	
		gain, winding angle, winding faults; pattern formation,	
		principles of pattern breaking. winding operation, i)	
		unwinding- side and over end withdrawal.	
	12	Multi-end Winding/Warping: a) Introduction, b) principal	
		methods of warping, c) warping process, d) warping creels-	
		continuous chain creel, truck creel, magazine creel, automatic	
		creel, unrolling creel	
	13	Activity: Industrial visit and study fabric dyeing	
		I	

IV		TEXTILE TESTING	8
	14	Introduction to textile testing: Properties of fibres, yarns and	
		fabrics and their relevance in assessing the performance of	
		textiles during and after manufacture, selection of samples for	
		testing, random and biased samples, review of statistical	
		techniques.	
	15	Fibre Testing: Measurement of fibre length: length and its	
		variability measurement, cumulative frequency diagram, fibre	
		length distribution, wt. distribution curve, methods of	
		measurement and associated parameters: fibre fineness:	
		technical significance, various parameters of measurement,	
		gravimetric, optical, air flow and vibroscopic method.	
	16		
	16	Determination of maturity of cotton: significance, maturity	
		ratio, maturity coefficient, degree of thickening, methods of	
		measurement- air flow, dye method, polarising light method	
		and NaOH method; tensile testing of fibres: comparative	
		stress-strain diagrams of different fibres, tensile testing of	
	17	single fibre, bundle strength testing.(Brief)	
	17	Yarn testing: Yarn dimensions and numbering: linear density,	
		yarn numbering systems, determination of yarn count,	
		conversion from one system to another, measurement of yarn	
		diameter, measurement of twist: twist, diameter and count	
		relation, twist factor, optimum twist, effect of twist on fabric	
		properties, methods of twist measurement.	
	10		
	18	Yarn strength: the concept of yarn rupture, types of tests-	
		single thread, lea and ballistic test, types of testers and their	
X 7		principles of working.	15
V	10	FIBRE FUNDAMENTALS AND DYEING	15
	19	Chemical structure of fibres: General introduction, nature of	

	matter, nature of fibres, requirements for fibre formation, chemical structure of synthetic fibres, chemical structure of natural fibres-vegetable or cellulosic, (b) Microstructure and macrostructure of natural fibres: cotton and other vegetable fibres.	
20	PHYSICAL PROPERTIES: a) Optical Properties, b) Thermal properties, c) Fiber friction and d) Dielectric properties. MECHANICAL PROPERTIES (Brief treatment without testing procedure) (a) Tensile properties:and (b) Elastic recovery, strain recovery, work recovery: Shear, bending, torsion and compression.	
21	Eco- friendly preparation of dyeing, printing and finishing. Pollutants in processing industries, and their effect on ecology, Special techniques for reducing pollution caused by textile processing. Ecofriendly substitutes .	

Practicals: (30 hrs)

A.Fibre 1. To prepare a Baer sorter diagram and determine the following: a) Effective Length b) Mean Length c) Dispersion percentage d) Short fibre percentage.Through industrial visit.

B.Yarn 1. To determine yarn count by Knowle's, Beesley, Quadrant and electronic balance.

Refrences:

- 1. Manmade Fibres by R.W. Moncrieff,
- 2. Textile Chemistry, Vol. I, by R.H. Peters,
- 3. Dyeing and Chemical Technology of Textile Fibres by E.R. Trotman,
- 4. Handbook of Fiber Science and Technology, Vol. IV, Fiber Chemistry by M. Lewin and E.M. Peare,

5. Man-made Fibres Science and Technology, Vol. 1,2,3, by H.F. Mark, S.M. Atlas and E. Cernia,

- 6. Polyester Fibres Chemistry and Technology by H. Ludwig,
- 7. Textbook of Polymer Science by F.W. Billmeyer.
- 8. The Technology of Short Staple Spinning by W. Klein
- 9. A Practical Guide to Opening & Carding, W. Klein

10. Manual of Cotton Spinning (Opening & Cleaning) by C. Shrigley,

- 11. Manual of Cotton Spinning (Carding) by W. G. Byerley et. al.,
- 12. Spun Yarn Technology by Eric Oxtoby,
- 13. Spun Yarn Technology (Vol-1 & Vol-2) by A Venkatasubramani
- 14. Principles of Textile Testing by J. E. Booth,
- 15. Textile Testing by Skinkle, β
- 16. Physical Properties of Textile Fibres by W.E. Morton and J.W.S. Hearle,

17. Testing and Quality Management by V.K. Kothari

Course Outcomes

No.	Upon completion of the course the graduate	Cognitive	PSO
	will be able to	Level	addresse
			d
CO-1	Will able to examine different types of textiles	U	PSO-1
CO-2	students will be able to identify the nature of	R, U	PSO-1,2
	fabrics		
CO-3	will be able to understand the dyeing process	An, E	PSO-6
CO-4	will be able understand the methods of	E, Ap	PSO-6
	manufacture of different fibres, knowledge of		
	textile testing		

S-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course:

Credits: 3:0:2 (Lecture:Tutorial:Practical)

CO No.	CO	РО	PSO	Cognitive Level	Knowledge Category	Lecture (L) /Tutorial (T)/ Practical (P)
CO-1	Will able to examine different types of textiles	1	1	U	F	L
CO-2	students will be able to identify the nature of fabrics	1,2	1,2	R, U	F, C	T /P
CO-3	will be able to understand the dyeing process	5	6	An, E	F,C	L
CO-4	will be able understand the	2	6	E, Ap	М	L

methods of manufacture o		
different fibres, knowledg		
of textile testing		

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	Р	PO	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
	0	2	0	0	0	0	0	S	S	S	S	S	S	S	S	S
	1		3	4	5	6	7	0	0	0	0	0	0	0	0	0
								1	2	3	4	5	6	7	8	9
CO1	3	-	-	-	-	-	-	3	-	-	-	-	-	-	-	-
CO2	3		-	-	-	-	-		2	-	-	-	-	-	-	-
		3						3								
CO3	-	-	-	-	2	-	-	-	-	-	-	-	3	-	-	-
CO4	-	3	-	-		-	-	-	-	-	-	-	3	-	-	-

Correlation Levels:

- a. (NA),
- b. 1 (Mild),
- c. 2 (Moderate)
- d. 3 (High)

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1		√		√
CO 2	\checkmark	√	\checkmark	\checkmark
CO 3	\checkmark	√	\checkmark	✓

CO 4	V	\checkmark
CO 5	\checkmark	\checkmark

MAR IVANIOS COLLEGE (AUTONOMOUS), THIRUVANANTHAPURAM

BOARD OF STUDIES IN BOTANY, 2023 – 2026

No	Name	Designation		
1.	Dr Bindu Alex (Chairman)	Assistant Professor, Dept of Botany, Mar Ivanios College.		
2.	Prof. (Dr.) Shiburaj Sugathan (University Nominee)	Professor, Dept of Botany, University of Kerala, Kariavattom.		
3.	Dr Victoria P K	Associate Professor, Dept of Botany, Mar Ivanios College.		
4.	Dr C. Suju Skaria	Assistant Professor, Dept of Botany, Mar Ivanios College.		
5.	Dr Rejitha L R	Assistant Professor, Dept of Botany, Mar Ivanios College.		
6.	Dr Preetha S S	Assistant Professor, Dept of Botany, Mar Ivanios College.		
7.	Dr Mary Sheeba A	Assistant Professor, Dept of Botany, Mar Ivanios College.		
8.	Dr Basil George	Assistant Professor Dept of Botany, CMS College, Kottayam.		
9.	Dr M. Anilkumar	Associate Professor & Head Dept of Botany, Union Christian College,		
10.	Dr. K.K. Sabu	Principal Scientist and Head, Biotechnology & Bioinformatics Division, JNTBGRI, Palode.		
11.	Dr. Jude Emmanuel	Environmental Scientist, Directorate of Environment & Climate Change, Thampanoor.		
12.	Dr. TK. Hrideek	Senior scientist, Kerala Forest Research Institute, Peechi.		
13.	Dr. Vignesh RM	Farm Superintendent, Pharmacognosy Unit,Govt. Ayurveda		

		Research Institute.
14.	Dr. Mahesh S	Asst. Professor and HOD, Dept. of Botany, Christian College, Kattakada.
15.	Mr. Shalaj R	Asst. Professor, Dept. of Botany, St. Gregorios College, Kottarakara.