MAR IVANIOS COLLEGE (AUTONOMOUS) Affiliated to the University of Kerala, Thiruvananthapuram

Kerala

SCHEME AND SYLLABUS FOR THE FOUR YEAR UNDERGRADUATE PROGRAMME (FYUGP)

MAJOR DISCIPLINE ZOOLOGY

(With effect from 2024 Admissions)

Approved by the Board of Studies in

Zoology

	CONTENTS	
Sl No.	Content Title	Page
1.	Preamble	4
2.	Graduate Attributes and Programme Outcomes (POs)	6
3.	Programme Specific Outcomes (PSOs)	10
4.	Course and Credit Structure of FYUGP	10
5.	Course Participation/Attendance	12
6.	Assessment and Evaluation	12
7.	Letter Grades and Grade Point	13
8.	Computation of SGPA and CGPA	14
9.	List of Courses	16
	SEMESTER I	
10.	Animal diversity and Ecological Interactions I	19
11	Wildlife Biology	24
12	Lifestyle Diseases and Management	28
	SEMESTER II	
13	Animal Diversity and Ecological Interactions II	32
14	Forest Ecosystem and Management	37
15	Scientific Insights into Sex Education	41
	SEMESTER III	
16	Chordata	47
17	Ecotoxicology: Chemical Impacts on Ecosystems and Health	54
18	Basic Human Anatomy	59
19	Public Health and Management	63
	SEMESTER IV	
20	Systematics, Biodiversity and Conservation Biology	68
21	Comparative Anatomy of Vertebrates	73
22	Toxicology and Disaster Management	78
23	Basic Instrumentation Techniques in Life Science	83
	SEMESTER V	
24	Cell Biology	89
25	Genetics	95

26	Molecular Biology	101
27	Microbiology and Infectious Diseases	107
28	Genetic Engineering	112
29	Basic Laboratory Animal Practices	116
30	Vermiculture	119
	SEMESTER VI	
31	Human Physiology	124
32	Developmental Biology	130
33	Evolution, Ethology and Zoogeography	135
34	Immunology	140
35	Biomolecules	145
36	Animal Cell Culture Techniques	150
	SEMESTER VII	
37	Biochemistry	154
38	Bioanalytical Techniques	158
	SEMESTER VIII	
39	Genomics and Proteomics	163
40	Biology of Cancer	167
41	Tumour Immunology and Microenvironment	171

PREAMBLE

National Education Policy (NEP 2020) envisions 'higher education as playing an extremely important role in promoting human as well as societal wellbeing and in developing India as envisioned in its Constitution - a democratic, just, socially conscious, cultured, and humane nation upholding liberty, equality, fraternity, and justice for all' (Section 9.1). NEP also expects higher education 'to develop good, thoughtful, well-rounded, and creative individuals, enabling an individual to study one or more specialized areas of interest at a deep level, and also develop character, ethical and Constitutional values, intellectual curiosity, scientific temper, creativity, spirit of service, and 21st century capabilities across a range of disciplines including sciences, social sciences, arts, humanities, languages, as well as professional, technical, and vocational subjects' (Section 9.1.1). Hence, more than the creation of greater opportunities for individual employment, higher education represents the key to more vibrant, socially engaged, cooperative communities and a happier, cohesive, cultured, productive, innovative, progressive, and prosperous nation. (Section 9.1.3). NEP also identifies some of the major problems currently faced by the higher education system in India (Section 9.2) and envisions a complete overhaul and re-energizing of the higher education system to overcome these challenges and thereby deliver high-quality higher education, with equity and inclusion (Section 9.3). One of the major changes which the policy proposes is moving towards a more multidisciplinary undergraduate education (Section 9.3(b)) which develops all capacities of human beings -intellectual, aesthetic, social, physical, emotional, and moral in an integrated manner (Section 11.3). In order to achieve this in its full potential, NEP visions the adjusting of the structure and lengths of degree programmes accordingly. "The undergraduate degree will be of either 3 or 4-year duration, with multiple exit options within this period, with appropriate certifications, e.g., a certificate after completing 1 year in a discipline or field including vocational and professional areas, or a diploma after 2 years of study, or a Bachelor 's degree after a 3-year programme. The 4year multidisciplinary Bachelor's programme, however, shall be the preferred option since it allows the opportunity to experience the full range of holistic and multidisciplinary education in addition to a focus on the chosen major and minors as per the choices of the student." (Section 11.9)

In accordance with the NEP 2020, the UGC formulated a new student-centric "Curriculum and Credit Framework for Undergraduate Programmes (CCFUP)" incorporating a flexible choice-based credit system, multidisciplinary approach, and multiple entry and exit options and establishing three Broad Pathways,

(a) 3-year UG Degree,

(b) 4-year UG Degree (Honours), and

(c) 4-year UG Degree (Honours) with Research)

Accordingly, the Kerala Higher Education Reforms Commission 2022, headed by Prof Shyam B. Menon, has recommended a comprehensive reform in the undergraduate curriculum with the adoption of the 4-year undergraduate Programmes, which will bring undergraduate education in Kerala at par with the universities abroad. Consequently, Kerala State Curriculum Committee for Higher Education 2023 has been constituted, with Dr Suresh Das as Chairman, and they have proposed a model Kerala State Higher Education Curriculum framework for undergraduate education.

The University of Kerala has decided to introduce the Four Year Under Graduate Programmes (FYUGP) from the academic year 2024-2025 onwards in its teaching departments and all affiliated colleges, and has issued many draft documents and conducted college level awareness programmes about the same.

Mar Ivanios College, by virtue of its autonomy status, conferred in 2014 and extended in 2022, vide University Grants Commission (Conferment of Autonomous Status Upon Colleges and Measures for Maintenance of Standards in Autonomous Colleges) Regulations, 2023, has the power to review existing courses/programmes and, restructure, redesign and prescribe its own courses/programmes of study and syllabi and to formulate new courses/programmes within the nomenclature specified by UGC as per the Specification of Degrees 2014 as amended from time to time. Accordingly, the Board of Studies in Zoology of Mar Ivanios College (Autonomous) proposed the implementation of the FYUGP scheme with effect from 2024 admission onwards and prepared the scheme and syllabi through many of the meetings and discussions. The Academic Council of the college which met on 30th April have discussed the proposal and syllabi in detail and approved the same to be implemented from 2024 admission onwards, subject to the final directions of the University of Kerala.

The salient features of the syllabus prepared and presented by the Board of Studies include the following:

- The curriculum is designed based on Outcome Based Education (OBE) approach.
- The curriculum follows Choice-Based Credit System (CBCS): This system allows students to select courses from a prescribed list. A specified number of credits must be earned to award the degree
- The curriculum follows the basic framework, course wise/programme-wise minimum/maximum credits set by the University of Kerala for FYUGP and abides by the basic mandatory principles of Four Year Under Graduate Programmes (UoK-FYUGP) Regulations, 2024.
- The FYUGP in Zoology is designed to offer students a holistic understanding of the diverse facets of Zoology, ranging from classical to contemporary concepts.
- Through a blend of lectures, laboratory sessions, fieldwork and research projects, students are exposed to the intricacies of zoological phenomena and are encouraged to develop critical thinking and analytical skills.
- Field studies in various ecological habitats and hands-on experiences not only deepen their understanding of zoological concepts but also cultivate a sense of stewardship towards biodiversity conservation.
- Under the mentorship of faculty members, students are encouraged to undertake independent research projects on topics of their interest ranging from Ecology to Cancer Biology.
- By offering a rigorous curriculum, hands-on learning experiences, and opportunities for research and innovation, the program aims to nurture the next generation of

zoologists who will contribute to the advancement of knowledge and uphold the values of sustainable development.

Graduate Attributes and Programme Outcomes (POs)

The National Higher Education Oualification Framework (NHEOF) envisages that students on completion of a programme of study must possess and demonstrate the expected graduate profile/attributes acquired through one or more modes of learning. The graduate profile/attributes indicate the quality and feature or characteristics of the graduate of a programme of study, including learning outcomes relating to the disciplinary area(s) relating to the chosen field(s) of learning and generic learning outcomes that are expected to be acquired by a graduate on completion of the programme(s) of study. The graduate profile/attributes include capabilities that help widen the current knowledge base and skills, gain and apply new knowledge and skills, undertake future studies independently, perform well in a chosen career, and play a constructive role as a responsible citizen in the society. The graduate profile/attributes are acquired incrementally and describe a set of competencies that are transferable beyond the study of a particular subject/disciplinary area and programme contexts in which they have been developed. Graduate profile/attributes are fostered through meaningful learning experiences made available through the curriculum and learning experience, the total college/university experience, and a process of critical and reflective thinking. Mar Ivanios College (Autonomous) is fully committed to ensuring the attainment of the necessary graduation attributes by the students. The college has clearly defined its raison de'tre, the philosophy of its existence, through the Motto "Truth Shall Liberate You" (Veritas Vos Liberabit) which refers to the ultimate enlightenment which can emerge only at the intersection of sharp intellect, sound physique, strong mind, staunch ethics, and profound spirituality. This is further made explicit through its Vision, Mission and Goals and the same expect all students who graduate from the college to:

- Have inculcated "the values of truth and charity for the protection and promotion of human dignity and of a cultural heritage, through teaching, research, and extension activities dedicated to society";
- Be co-creators of a vibrant academic community known for its innovation, intellectual rigour and social commitment;
- Be "intellectually trained, morally upright, socially committed, spiritually inspired and ecologically conscious young men and women who would be dedicated to working for the good of society, the nation and the world";
- Have acquired "global competencies and skills";
- Have inculcated a sense of harmony, equality and fraternity among youth, transcending religious, linguistic, regional or sectional diversities; and
- Have developed "scientific temper, humanism and the spirit of inquiry and reform".

Programme Outcomes are the expected student attributes achieved by a student after the student completes the FYUGP from any of the streams/pathways.

The Programme Outcomes (POs) for the FYUGP programmes across all streams and pathways, based on the above core philosophy, and in consonance with the National Higher Education Qualifications Framework (NHEQF) are given below:

PO 1 Demonstrate the acquisition of all necessary knowledge and skills within their disciplinary/ multi-disciplinary areas of learning. These include the acquisition of: comprehensive knowledge and coherent understanding of their • chosen disciplinary/ interdisciplinary areas of study, their linkages with related fields, and the awareness of current trends in their chosen area of study; essential knowledge for skilled work in chosen field(s), including selfemployment and entrepreneurship skills; proficiency in specialized areas within chosen fields of study, encompassing diverse practical skills applicable to different situations within those fields: • the ability to apply learned knowledge to novel situations, solve problems, and relate concepts to real-world scenarios rather than just memorizing curriculum content. **PO 2** Acquire problem-solving, critical thinking, analytical reasoning skills and demonstrate creativity in their thought processes by demonstrating the ability to: • solve different kinds of problems in familiar and non-familiar contexts both within and outside their disciplinary/ multidisciplinary areas of learning; • apply analytic thought to a body of knowledge, including the analysis and evaluation of policies, and practices, as well as evidence, arguments, claims, and beliefs; • analyse and synthesize data from a variety of sources and draw valid conclusions and support them with evidence and examples. • the ability to plan, execute and report the results of an experiment or investigation; • adhere to scientific temper and ethics in their thought process; • adopt innovative, imaginative, lateral thinking, interpersonal skills and emotional intelligence; and • incubate entrepreneurial and start-up ideas. **PO 3** Develop a profound environmental dedication by fostering ecological awareness and engaging in actions that promote sustainable development by achieving the ability to recognize environmental and sustainability issues, and participate in actions to promote sustainable development as well as mitigate the effects of environmental degradation, climate change, and pollution; contribute to effective waste management, conservation of biological diversity, management of biological resources and biodiversity, forest and wildlife conservation, sustainable development and living, and the preservation of life in all forms.

By the end of the Four-Year Under-Graduate Programme, students will:

	• participate in community-engaged services/ developmental activities and
	thus exemplify the ideals of community engagement and service learning
DO 4	and deep social commitment.
PO 4	Accomplish perfect communication, teamwork, and leadership skills, particularly in academic and professional settings, while demonstrating
	nuance and attention to etiquette in all communicative contexts. This will
	enable them to:
	• listen carefully, and read texts and research documents, and present complex information with clarity and precision to different audiences;
	• express thoughts and ideas and communicate effectively through speech and writing using appropriate media;
	• communicate using language which is respectful of gender and minority orientations;
	• act together as a group or a team in the interests of a common cause and working efficiently as a member of a team;
	• inspire the team with a vision to achieve a stated goal, and use
	management skills to guide the team in the right direction.
PO5	Acquire the necessary skills, including 'learning to learn' skills, and foster
	innovative ideas to improve competence and employability, keeping pace with
	the evolving global landscape and technological advancements by
	demonstrating the ability to:
	• pursue learning activities throughout life, through self-paced and self- directed learning aimed at personal development, meeting economic, social, and cultural objectives, and adapting to changing trades and demands of the workplace, including adapting to the changes in work processes in the context of the fourth industrial revolution, through knowledge/ skill development/reskilling;
	• work independently, identify appropriate resources required for further learning;
	• acquire organizational and time management skills to set self-defined goals and targets with timelines;
	• be a proactive life-long learner.
	• use ICT in a variety of learning and work situations;
	• access, evaluate, and use a variety of relevant information sources, and use appropriate software for analysis of data;
	• navigate cyberspaces by following appropriate ethical principles and cyber etiquette.
	• use cutting edge AI tools with equal commitment to efficiency and ethics.
	• think 'out of the box' and generate solutions to complex problems in unfamiliar contexts;
PO6	Develop research-related skills including the ability to conceptualize research
	hypotheses/projects and adopt suitable tools and methodologies for analysis with:

	• a keen sense of observation, inquiry, and capability for asking relevant/
	appropriate research questions;
	• the ability to problematize, synthesize, and articulate issues and design
	research proposals;
	• the ability to define problems, formulate appropriate and relevant
	research questions, formulate hypotheses, test hypotheses using
	quantitative and qualitative data, establish hypotheses, make inferences
	based on the analysis and interpretation of data, and predict cause-and
	effect relationships;
	• the capacity to develop appropriate methodology and tools for data
	collection;
	• the appropriate use of statistical and other analytical tools and techniques;
	• the ability to plan, execute and report the results of an experiment or
	investigation;
	• the ability to acquire the understanding of basic research ethics and skills
	in practicing/doing ethics in the field/ in personal research work,
	regardless of the funding authority or the field of study
PO7	Assimilate a sound value system, a sense of autonomy, multicultural
	competence, social commitment, and the spirit of inclusivity and empathy by
	imbibing the spirit and the holistic ethos of the 'Multi-Dimensional Ivanian'
	(MDI) approach. This will enable them to:
	• embrace and practice constitutional, humanistic, ethical, and moral values
	in life, including universal human values of integrity, truth, righteous
	conduct, peace, love, nonviolence, scientific temper, citizenship values;
	• identify ethical issues related to work, follow ethical practices and be
	objective, unbiased, and truthful actions in all aspects of work, including
	avoiding unethical behaviour such as fabrication, falsification or
	misrepresentation of data, or committing plagiarism, and adhering to
	intellectual property rights;
	• exercise responsibility and demonstrate accountability in applying
	knowledge and/or skills in work and/or learning contexts appropriate for
	the level of the qualification, including ensuring safety and security at
	workplaces;
	• practice responsible global citizenship required for responding to
	contemporary global challenges, enabling learners to become aware of and
	understand global issues and to become active promoters of more peaceful,
	tolerant, inclusive, secure, and sustainable societies;
	• effectively engage in a multicultural group/society and interact respectfully
	with diverse groups;
	• identify with or understand the perspective, experiences, or points of view
	and emotions of another individual or group.
	• demonstrate gender sensitivity and adopt a gender-neutral approach, as
	also empathy for the less advantaged and the differently-abled including

	those with learning disabilities;
•	demonstrate proficiency in arts/ sports/ games, physical, mental and
	emotional fitness, entrepreneurial /organizational /pubic
	speaking/environmental/ community-oriented areas by actively
	participating in the wide range of co-curricular activities that are available
	to the students of Mar Ivanios College.

Programme Specific Outcomes (PSOs)

In conformity with the POs, the Programme Specific Outcomes (PSOs) of the Major in Zoology are drafted as given below:

PSO-1	Gain in-depth understanding of the great diversity of organisms that occupy
	different ecological niches on Earth and the intricacy of the different life
	systems that these organisms adopt.
PSO-2	Appreciate the value of conservation and promote the development of practical
	solutions to today's conservation challenges over sustainable development.
PSO-3	Acquire a thorough understanding of foundational concepts of Zoology, with
	evolution serving as the overarching framework that connects all of the topics.
PSO-4	Establish interest and competence with scientific equipment introduced, ensuring
	overall development.
PSO-5	Possess the skill sets required in biology and have a solid foundation in the
	principles of current biological trends and applied domains.
PSO-6	To build a solid conceptual foundation in biology to support your critical thinking
	abilities.
PSO-7	Establish the groundwork for innovative thinking by studying application-based
	fields, which will provide improved future chances for self-sustenance in
	academia or industry.
PSO-8	Perform fundamental research, develop your abilities in experimental design,
	scientific writing, and the necessary statistical analysis to defend your findings.

Course and Credit Structure of FYUGP

The pathway preferably followed by the department will be Major with Minor or Major with multiple disciplines of study.

The Course and Credit Structure	of FYUGP is given below:
---------------------------------	--------------------------

Sem	DSC (4 Cr)	DSE (4 Cr)	AEC (3 Cr)	SEC (3 Cr)	MDC (3 Cr)	VAC (3 Cr)	Internship (credit-2)/ Project/ Additional Courses (credit-12)	Total courses	Total credits
Ι	A-1 B-1 C-1		AEC (Eng)-1 AEC(OL)-2		MDC-1			6	21
II	A-2 B-2		AEC (Eng)-3 AEC(OL)-4		MDC-2			6	21

	C-2								
III	A-2 B-2 C-2	DSE A -1			MDC (Kerala Studies)- 3	VAC-1		6	22
IV	A-4 A-5	DSE A-2		SEC-1		VAC-2 VAC-3	Internship	6	23
V	A-6 A-7 A-8	DSE -3 DSE -4		SEC-2				6	23
VI	A-9 A-10 A-11	DSE -5 DSE -6		SEC-3				6	23
Total	A (11) B (3) C (3)	6	4	3	3	3	1*	36	133
	EXIT OP	FION AVA	AILABLE AND WI		ENTS WI		WARDED U	G DEGR	EE
VII	A-12 A-13 B/C-4 B/C-5	FION AVA DSE -7					WARDED U	G DEGRI	EE 24
VII	A-12 A-13 B/C-4						Research Project/ Internship /Project or 03 courses -12Cr		

A – Major Discipline

B/C-Minor/Multiple discipline

- * Mandatory Internship at the end of Semester 4
- ** Research Project/ Internship /Project as part of Honours with Research

*** - Additional courses of 4 credits each.

Cr - Credits

- **Research group project for students exiting after UG 3 years:** Students who propose to exit after 3 Year UG programme can do a group project with an extra two credits to obtain research experience in discipline-specific areas of the program. The BoS can decide the number of students for the group and the evaluation criteria.
- Students will be able to take other pathways permissible under University of Kerala Four Year Under Graduate Programmes (UoK-FYUGP) Regulations, 2024, subject to the availability of courses/ faculty/infrastructure of the college.

• The Board of Studies shall prepare and publish a list of online courses at different levels before the commencement of classes in the respective semester offered in various online educational platforms recognised by the academic council of the college, which can be opted by the students for acquiring additional credits.

Course Participation/Attendance-

- 1. A student shall be permitted to register for the end-semester evaluation of a specific course to acquire the credits only if the student has completed 75% of the prescribed classroom activities in physical, online, or blended modes, as stipulated by the BoS, including any makeup activities as specified by the faculty of that particular course.
- 2. The reasons/cases of permissible authorised leave shall be specified by the college, with the approval of the Academic Council, ratified by the Governing Body.
- 3. The condonation facility shall be availed as per the existing University/college norms.

Assessment and Evaluation

- 1. The assessment of a course shall combine a Continuous Comprehensive Assessment (CCA) and an End Semester Evaluation (ESE).
- 2. For courses without practical/lab modules, 30% weightage shall be given for CCA and the remaining 70% of the weight shall be for the ESE.
- 3. CCA will have two sub-components: Formative Assessment (FA) and Summative Assessment (SA).
- 4. The CCA subcomponents will be given marks as per the following proportions:
 - Discipline specific summative assessment -15 % of the total
 - Course attendance 5 % of the total.
 - Discipline specific formative assessment 10 % of the total.
- 5. The details of summative and formative assessment criteria, including that of attendance, will be specified by each course coordinator at the beginning of the semester, with the approval of the respective Head of the Department/BoS Chairperson and the Principal, and will be published on the college website.
- 6. For courses with practical/lab modules, 40% weightage shall be given for CCA and the remaining 60% of the weight shall be for the ESE.
- 7. In such cases specified in the item above, the CCA subcomponents will be given marks as per the following proportions:
 - Discipline specific summative assessment 10 % of the total
 - Course attendance 5 % of the total.
 - Discipline specific formative assessment (Class room activities, observation of skills, viva voce, quiz, interview, oral presentations, in class discussions, computerized adaptive testing, group tutorial work, reflection writing assignments, field study reports, self and peer assessments, service-learning activities, etc.)
 - Summative Assessment (Practical Record, Practical test, skill, etc). 10 % of the total.
- 8. The Course Coordinator shall be responsible for evaluating all the components of CCA for the course in question. Any grievances regarding the same shall be submitted

to the Course Coordinator within 5 days of the publication of the same on the department notice board or official class group. If the grievance is not settled at the Course Coordinator level, the student is free to appeal to the Head of the Department, within the next 3 days, who will discuss the same in the Department Level Monitoring Committee (DLMC). If still needed, students can further appeal to the College Level Monitoring Committee (ULMC) or in essential situations the University Level Monitoring Committee (ULMC) in a time period as specified by these bodies.

- 9. Regarding evaluation, one credit will be evaluated for 20 marks in a semester; thus, a 4-credit course will be evaluated for 80 marks, and 3-credit courses for 60 marks. However, any changes to this if brought by the University will be followed.
- 10. The duration of the end semester examination of a course with 4 credits will be 2 hours and the same for a course with 3 credits may be 1.5 hours/2 hours.

Course	Cr	edit	Ma	arks		Lecture			Practical	
	Lecture	Practical Lecture Practical CCA (30%) ESE		CCA (40%)		ESE				
					SA (50%)	FA (50%)	(70%)	SA (50%)	FA (50%)	(60%)
	4	0	80	0	12	12	56	0	0	0
	3	1	60	20	9	9	42	4	4	12
4	2	2	40	40	6	6	28	8	8	24
credit	1	3	20	60	3	3	14	12	12	36
courses	0	4	0	80	0	0	0	16	16	48
	Credits		Marks			Lecture			Practical	
	Lecture	Practical	Lecture	Practical	CCA (3	0%)	ESE	CCA (40%)		ESE
3					SA	FA	(70%)	SA	FA	(60%)
credit					(50%)	(50%)		(50%)	(50%)	
courses	3	0	60	0	9	9	42	0	0	0
	2	1	40	20	6	6	28	4	4	12
	1	2	20	40	3	3	14	8	8	24
	0	3	0	60	0	0	0	12	12	36

Mark Distribution Table

Letter Grades and Grade Point

- 1. A mark system is followed to evaluate each question. For each course in the semester, letter grades and grade points are introduced in a 10-point indirect grading system as per the guidelines given below.
- 2. The Semester Grade Point Average (SGPA) is computed from the grades to measure the student's performance in a given semester. The SGPA is based on the current term's grades, while the Cumulative Grade Point Average (CGPA) is based on the grades in all courses taken after joining the programme of study.
- 3. The weighted grade point will be mentioned in the student's final grade cards, issued by the college, based on the marks obtained.

Letter Grade Grade Point		Percentage of marks (X)	Class
		(CCA + ESE together)	
O (Outstanding)	10	$X \ge 95\%$	FIRST CLASS
A+ (Excellent)	9	$85\% \le X < 95\%$	WITH
A (Very Good)	8	$75\% \le X < 85\%$	DISTINCTION
B+ (Good)	7	$65\% \le X < 75\%$	
B (Above Average)	6	$55\% \le X < 65\%$	FIRST CLASS
C (Average)	5	$45\% \le X < 55\%$	SECOND CLASS
P (Pass)*	4	$35\% \le X < 45\%$	THIRD CLASS
F (Fail)	0	X< 35%	FAIL
Ab (Absent)	0		FAIL

4. The grades and grade points will be given as per the following format:

- For a course PASS, separate minimum of 35% is needed for CCA and ESE.
- Less than 35% in either ESE or CCA is FAIL.

Computation of SGPA and CGPA

SGPA (Semester Grade Point Average) and CGPA (cumulative Grade Point Average) will be computed as follows:

1. The SGPA is the ratio of the sum of the product of the number of credits with the grade points scored by a student in all the courses taken by a student and the sum of the number of credits of all the courses undergone by a student in the semester. That is,

$$S_j = \frac{\sum (C_{ij} \times G_{ij})}{\sum C_{ij}}$$

where S_i is the SGPA in the jthsemester,

 C_{ij} is the number of credits for the ith course in the jthsemester, and

 G_{ij} is the the grade point scored by the student in the ith course in the jth semester.

2. The CGPA is also calculated in the same manner considering all the courses undergone by a student over all the semesters of a programme. That is,

$$CGPA = \frac{\sum (C_i \times S_i)}{\sum C_i}$$

where S_i is the SGPA in the ith semester and

 $\sum C_i$ is the total number of credits in the ith semester.

- 3. The SGPA and CGPA shall be rounded to 2 decimal points and reported in the transcripts.
- 4. Requirement for the successful completion of a Semester:

SGPA of 4 or above and a PASS in all the courses, that is, minimum total of 35% mark in each course (CCA + ESE), with a separate minimum of 35% mark for both CCA and ESE. Appropriate and permissible rules of rounding off numbers may be adopted as per decisions of the Academic Council.

5. Minimum Eligibility Criteria for 4 Year UG (Honours with Research)

- Students satisfactorily finishing all courses up to the 6th semester in the Department, with a CGPA of 7.5/10 or equivalent to 75% marks and above, will qualify to select the Honours programme with a Research Degree during the upcoming 7th and 8th semesters.
- A relaxation of 0.5 score, i.e. CGPA of 7/10 or an equivalent relaxation of grade, will be allowed for those who belong to SC/ST/OBC (non-creamy layer)/Differently Abled, Economically Weaker Section (EWS) and other categories as per the UGC norms from time to time.

Field trip/study tour:

Field visits and study tours are essential components of the undergraduate Zoology curriculum, providing students with invaluable hands-on experience and real-world exposure to diverse ecosystems and animal behaviour. These excursions offer students the opportunity to observe and interact with animals in their natural habitats, fostering a deeper understanding of ecological principles, biodiversity, and conservation issues. By engaging in fieldwork, students develop practical skills such as data collection, specimen identification, and field observation techniques, which are integral to a career in Zoology or related fields. Additionally, these experiences inspire curiosity, critical thinking, and a passion for wildlife conservation, ultimately enriching the learning experience and preparing students for future endeavors in the field of zoological sciences. Hence, field trip/study tour will be part of the 3 Year/4 Year UG Programme majoring in Zoology offered by the Department of Zoology, Mar Ivanios College (Autonomous). The number of days for the field trip/study tour will be decided by the Principal in consultation with the BoS and the College Council.

Dr. Meera George Chairman BoS (Zoology) Mar Ivanios College (Autonomous), Thiruvananthapuram

Thiruvananthapuram

10-05-2024

LIST OF COURSES OFFERED BY THE

DEPARTMENT OF ZOOLOGY

Course code	Course Title	Course category	Credit	Hour distribution per week		
		85		L	Τ	P
	SEMESTER – I Academi	c Level 100-	199			
MIUK1DSCZOO100.1	Animal diversity and Ecological Interactions I	Core	4	3		2
MIUK1DSCZOO101.1	Wildlife Biology	Core (B/C)	4	3		2
MIUK1MDCZOO100.1	Lifestyle Diseases and Management	Multidisci plinary	3	3		
	SEMESTER – II Academi	ic Level 100-	-199			
MIUK2DSCZOO102.1	Animal Diversity and Ecological Interactions II	Core	4	3		2
MIUK2DSCZOO103.1	Forest Ecosystem and Management	Core (B/C)	4	3		2
MIUK2MDCZOO101.1	Scientific Insights into Sex Education	Multi- Disciplinary	3	3		
	SEMESTER – III Academ	ic Level 200	-299		_	
MIUK3DSCZOO200.1	Chordata	Core	4	3		2
MIUK3DSCZOO201.1	Ecotoxicology: Chemical Impacts on Ecosystems and Health	Core (B/C)	4	3		2
MIUK3DSEZOO200.1	Basic Human Anatomy	Elective	4	3		2
MIUK3VACZOO200.1	Public Health and Management	Value added	3	3		
	SEMESTER – IV Academ	ic Level 200	-299			
MIUK4DSCZOO202.1	Systematics, Biodiversity and Conservation Biology	Core	4	3		2
MIUK4DSCZOO203.1	Comparative Anatomy of Vertebrates	Core	4	3		2
MIUK4DSEZOO201.1	Toxicology and Disaster Management	Elective	4	3		2
MIUK4SECZOO200.1 Basic Instrumentation Techniques in Life Science		Skill enhancement	3	2		2
	SEMESTER – V Academi	ic Level 300-	-399			
MIUK5DSCZOO300.1	Cell Biology	Core	4	3		2

MIUK5DSCZOO301.1	Genetics	Core	4	3		2
MIUK5DSCZOO302.1	Molecular Biology	Core	4	3		2
MIUK5DSEZOO300.1	Microbiology and Elective 4 3 Infectious Diseases					2
MIUK5DSEZOO301.1	Genetic Engineering					2
MIUK5SECZOO300.1	Basic Laboratory Animal Practices	Skill enhancem ent	3	2		2
MIUK5SECZOO301.1	Vermiculture	Skill enhancem ent	3	2		2
	SEMESTER – VI Academ	ic Level 300	-399			
MIUK6DSCZOO303.1	Human Physiology	Core	4 3			2
MIUK6DSCZOO304.1	Developmental Biology					2
MIUK6DSCZOO305.1	Evolution, Ethology and Zoogeography					2
MIUK6DSEZOO302.1	Immunology	Elective	4	3		2
MIUK6DSEZOO303.1	Biomolecules	Elective	4	3		2
MIUK6SECZOO302.1	Animal Cell Culture Techniques	Skill enhancem ent	3	2		2
	SEMESTER – VII Academ	ic Level 400)-499			
MIUK7DSCZOO400.1	Biochemistry	Core	4	3		2
MIUK7DSCZOO401.1	Bioanalytical Techniques	Core	4	3		2
S	SEMESTER – VIII Acaden	nic Level 40	0-499			
MIUK8DSEZOO400.1	Genomics and Proteomics	Elective 4 3			2	
MIUK8DSEZOO401.1	Biology Of Cancer	Elective	4	3		2
MIUK8DSEZOO402.1	Tumour Immunology and Microenvironment	mour Immunology and Elective 4 3				2

SEMESTER - I

Mar Ivanios College (Autonomous)

Discipline	ZOOLOGY				
Course Code	MIUK1DSCZOO100	.1			
Course Title	ANIMAL DIVERSI	TY AND EC	COLOGICA	L INTERAC	CTIONS I
Type of Course	DSC				
Semester	Ι				
Academic	100 - 199				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours/Week
	4	3 hours	-	2 hours	5
Pre-requisites	Basic knowledge on	Two-kingdo	m and Five K	Kingdom class	ifications.
	General characteristic	es of inverteb	orates.		
Course Summary	The course on anima fascinating world of The principles of taxo relationships among o	animals and onomy and c	d their interation,	actions within	n ecosystems.

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		INTRODUCTION TO INVERTEBRATES	14
	1	Introduction, Two kingdom classification and Whittaker's five kingdom classification. Advantages and disadvantages of five kingdom classification. Modern classification (Brief account)	3
	2	Taxonomy -Definition, history, new trends and importance, mention molecular taxonomy. Components of classification, Taxonomic hierarchy- taxon, category and rank. Linnaean hierarchy, nomenclature, principles of nomenclature. International Code of Zoological Nomenclature (ICZN), rules of nomenclature, requisites – uni, bi and trinomialism. Species, species concept and approach, taxonomic aids.	3
	3	Introduction to Protozoa Kingdom Protista : Structure and zoological importance and systematic position of <i>Actinophrys, Noctiluca, Paramecium</i> and <i>Opalina-</i> mention the symbiotic association. Ecological interactions of Parasitic protozoans- parasitic adaptations, morphology, life history, pathogenicity and prophylaxis of <i>Entameoba histolytica, Trypanosoma gambiense</i> and <i>Plasmodium</i> <i>vivax</i> .	8
II		MESOZOA AND PARAZOA	10

	4 7 8	 Classifications (Subkingdom Mesozoa, Subkingdom Parazoa, Subkingdom Eumetazoa.) Levels of organization– cellular, tissue, organ. Divisions of Eumetazoa- Radiata, Bilateria. Protostomia, Deuterostomia. Coelom, metamerism, cephalisation. Sub kingdom Mesozoa- Salient features, eg. <i>Rhopalura</i>. Sub kingdom Parazoa- Salient features Phylum Porifera: Classifications- Calcispongia, eg. <i>Sycon</i>; Hydrospongia, eg. <i>Euplectella</i>; Demospongia, eg. <i>Spongilla</i>. Canal system and skeletal system in sponges. 	4 1 5
III		INTRODUCTION TO EUMETAZOA	7
	9	Phylum Cnidaria : Salient features, classifications- Class: Hydrozoa eg. <i>Physalia</i> , <i>Obelia</i> (structural organisation and life cycle), mention metagenesis. Class: Scyphozoa eg. <i>Aurelia</i> , <i>Rhizostoma</i> ; Class: Anthozoa eg. Sea anemone, (symbiotic relationship), <i>Madrepora</i> , Polymorphism in coelenterates. Corals and Coral Reefs: Types of coral reefs (Mention the ecological interactions).	7
IV		HELMINTHS	14
	10	Phylum Platyhelminthes : Salient features, classifications. Class: Turbellaria eg. <i>Planaria</i> ; mention regeneration, Class: Trematoda eg. <i>Fasciola</i> (life cycle and pathogenicity); Class: Cestoda, eg. <i>Teania solium</i> (life cycle and pathogenicity).	8
	11	Phylum Nematoda : Salient features, classifications. eg. <i>Ascaris, Enterobius, Wuchereria, Coenorhabditis elegans</i> (Mention the pathogenicity, Parasitic adaptations in helminths, host-parasitic interactions).	6
V		PRACTICUM	30
	12	Identification and classification of the following specimens Protista – Actinophrys, Noctiluca, Paramecium, Opalina Phylum Porifera – Euplectella, Spongilla Phylum Cnidaria – Hydra, Obelia, Physalia, Aurelia, Sea anemone, Madrepora Phylum Nematoda – Ascaris male and female (entire) Phylum Platyhelminthes – Bipalium, Fasciola, Taenia solium Specimen Collection Students shall collect any 2 invertebrates/parasites/pests specimens and prepare a brief note including taxonomy and submit for	
		evaluation. Study the diversity of Zooplankton/Protists in the water samples collected-Any two	

References

1. Barnes, R.D. (1987). Invertebrate Zoology. W. B. Sunders. New Delhi.

- Ekambaranatha Ayyar M. (1990). A Manual of Zoology. Vol. 1. Invertebrata- Part 1 & Part11. S. Viswanathan Printers and Publishers.Pvt. Ltd.
- 3. Hickman, C.P and Roberts, L.S. (1994). Animal Diversity. Wm. C. Brown, Dubuque, IA.
- 4. Hyman, L. H. (1942). The invertebrate volumes. Mc Gew Hill.
- 5. Jorden, E.L and Verma, P.S. (2000). Invertebrate Zoology. S. Chand andCo Ltd. New Delhi.
- 6. Kapoor, V.C. (1994). Theory and Practice of animal taxonomy. Oxford & IBH Publishing Co, New Delhi.
- 7. Kotpal, R.L, Agarwal, S.K. and R.P. Khetarpal. (2002). Modern text book of Zoology Invertebrates.
- 8. Mayer, E. (1980). Principles of Systematic Zoology. Tata Mc Graw Hill Publishing Co, New Delhi.

Course	Outcomes	

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Identify and classify invertebrate Taxa based on key morphological characteristics	U,R,	PSO-1,2
CO-2	Apply taxonomic keys and techniques for identification of unknown invertebrate specimens.	R, U, Ap	PSO-1,2,3
CO-3	Develop skills in invertebrate collection and preservation for scientific study.	R,U, An	PSO-1,2
CO-4	Describe invertebrate morphology and features on functional adaptations of different invertebrate groups.	U, Ap, C	PSO-1,2
CO-5	Take measures to prevent the pathogenicity of helminth parasites.	Ap,U	PSO-7
CO-6	Identify and list out the economic importance of the lower invertebrates.	U, Ap	PSO-1,2
CO-7	Identify the biological significance of organisms and their role in our day-today-life.	U, Ap	PSO-1,2

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create Name of the Course: ANIMAL DIVERSITY AND ECOLOGICAL INTERACTIONS-I

Credits: 3:1 (Lecture : Practical)

CO	СО	POs	PSOs	Cognitive	Knowledge	Lecture (L)/	Practical
No.				Level	Category	Tutorial (T)	(P)
1	Identify and classify	1	PSO-1,2	U,R,	F, C	L	
	invertebrate Taxa						
	based on key						
	morphological						
	characteristics						
2	Apply taxonomic	1,2	PSO-	R, U, Ap	F,P	L	Р
	keys and		1,2,3	-			
	techniques for						
	identification of						
	unknown						

	invertebrate specimens.						
3	Develop skills in invertebrate collection and preservation for scientific study.	1	PSO- 1,2	R,U, An	F, P.	L	Р
4	Describe invertebrate morphology and features on functional adaptations of different invertebrate groups.	1	PSO- 1,2	U, Ap, C	F	L	
5	Take measures to prevent the pathogenicity of helminth parasites.	7	PSO-7	Ap,U	F	L	
6	Identify and list out the economic importance of the lower invertebrates.	1	PSO- 1,2	U, Ap	F	L	Р
7	Identify the biological significance of organisms and their role in our day- today-life.	1	PSO- 1,2	U, Ap	F,C	L	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs: Animal Diversity & Ecological Interactions-I

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO 1	3	2	-	-		-	-	
CO 2	3	3	-	-			-	
CO 3	3	3	-	-			-	
CO 4	3	1	-	-			-	
CO 5		-	-	-		-	2	
CO6	3	3						
CO7	3	2						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	-	-	-	-	-	-
CO2	3	3	-	-	-	-	-
CO3	3	-	-	-	-	-	-

CO4	3	-	-	-	-	-	-
CO5	-	-	-	-	-	-	3
CO6	3	-	-	-	-	-	-
CO7	3	-	-	-	-	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/discussion/quiz/seminar/presentation
- Project Evaluation
- Internal Exam
- End semester exam

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	\checkmark	\checkmark	\checkmark	\checkmark
CO 3		\checkmark	\checkmark	
CO 4	\checkmark	\checkmark	\checkmark	\checkmark
CO 5	\checkmark	\checkmark		\checkmark
CO 6	\checkmark		\checkmark	\checkmark
CO 7	\checkmark	\checkmark	\checkmark	\checkmark

Mar Ivanios College (Autonomous)

Discipline	ZOOLOGY							
Course Code	MIUK1DSCZOO101	.1						
Course Title	WILDLIFE BIOLO	GY						
Type of Course	DSC (B/C)							
Semester	Ι							
Academic	100 - 199							
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours/Week			
	4	3		2	5			
Pre-requisites	Basic knowledge of a	nimal divers	ity and wildl	ife.				
Course	This paper deals with	_			-			
Summary	importance, major th				1 1			
	This paper mainly en	nphasis on de	eveloping inte	erest and invo	king a sense of			
	responsibility among							
	also explores differe	also explores different techniques, perspectives, and approaches to both						
	identify and achieve	wildlife man	agement goa	ls. This course	e will motivate			
	students to pursue	career in t	he field of	wildlife cor	nservation and			
	management.							

Detailed Syllabus:

Module	Unit	Content	Hrs						
Ι		SCOPE AND IMPORTANCE OF WILDLIFE BIOLOGY	10						
	1	Definition of Wildlife. Economic importance of wildlife. India as a mega wildlife diversity country.	3						
	2	2 Conservation ethics and importance of conservation of wildlife							
	3	Wildlife resources in Kerala -Brief account of mammals, birds,	5						
		herpetofauna, fishes, invertebrates of Kerala, IUCN status (brief account)							
II		WILDLIFE ESTIMATION AND HEALTH MANAGEMENT							
	4	Capture- recapture method, Capturing and marking techniques- entrapping, darting, tagging and banding.	5						
	5	Faecal analysis of ungulates and carnivores: Faecal samples, slide preparation and Hair identification; Pug marks and Census methods	5						
	6	Common diseases of wild animals: Zoonosis (Ebola and Salmonellosis), Rabies, Foot and Mouth Disease, Mycobacterium TB, Bovine and Avian Flu	5						
III		WILDLIFE CONSERVATION AND MANAGEMENT	12						
	7	Traditional conservation Practice: Ecological knowledge and local	5						

ZOOLOGY (Syllabus 2024 Admn. onwards)

	-		-
		biodiversity documentation.	
	9	Wildlife Conservation: Definition, In-situ and ex-situ conservation.	5
		Wildlife (Protection) Act, 1972, IUCN CITES, NBA, IBA. Project Tiger,	
		Project Elephant – Project Crocodile, Wildlife trade and regulations	
	10	Application of GIS and remote sensing in wildlife management.	2
IV		HUMAN WILDLIFE INTERACTIONS	8
	11	Human –wildlife coexistence. Ecotourism. Wild life tourism in forests	3
	12	Man- animal conflict in India- discussion of case studies.	5
V		PRACTICUM	30
	13	Identification of faunal diversity through direct and indirect evidences	
		seen on a field trip to a wildlife conservation site and report submission	
	14	Submission of a report based on a visit to National Park/Wildlife	
		Sanctuary or any other wildlife conservation site.	
	15	Discussion and evaluation of various wildlife conservation project done	
		by government and submission of report	
	16	Bird watching and identification of resident and migratory birds and	
		submission of reports	

References

- 1. Goutam Kumar Saha & Subhendu Mazumdar (2017). Wildlife Biology: An Indian Perspective, PHI Learning.
- 2. Singh SK (2020). Textbook of Wildlife Management 3ed. CBS Publishers.
- 3. Beatrice Frank & Jenny A. Glikman (2019). Human–Wildlife Interactions: Turning Conflict into Coexistence. Cambridge University Press
- 4. Stephanie Schuttler (2020). Getting a Job in Wildlife Biology: What It's Like and What You Need to Know. ISBN-13 : .Independent publication.8675375127-979

Course Outcomes

No.	Upon completion of the course the graduate will be	0	PSO
	able to	Level	addressed
CO-1	Understand diverse wildlife fauna	U	1
CO-2	Define various wildlife management strategies.	R	2
CO-3	Explain various diseases and management of	U	3
	common diseases affecting wildlife.		
CO-4	Analyze the issue of human wildlife conflict.	An	6
CO-5	Evaluate the efficacy of wildlife conservation project	Е	6
	conducted by the government.		

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Wildlife Biology

Credits: 3:1 (Lecture:Practical)

CO	СО	PO	PSO	Cognitive	Knowledge	Lecture (L)/	Practical
No.				Level	Category	Tutorial (T)	(P)

1	Understand diverse wildlife fauna	1	1	U	F, C,P	L/T	Р
2	Define various wildlife management strategies	1, 3	2	R	F,C	L/T	
3	Explain various diseases and management of common diseases affecting wildlife.	1	3	U	F,C	L/T	
4	Analyze the issue of human wildlife conflict	3	6	An	F,C,P	L/T	p
5	Evaluate the efficacy of wildlife conservation project conducted by the government	3	6	Ε	F,P	L/T	p

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO 1	3	-	-	-	-	-	-	-
CO 2	-	3	-	-	-	-	-	-
CO 3	-	-	2	-	-	-	-	-
CO 4	-	-	-	-	-	3	-	-
CO 5	-	-	-	-	-	3	-	-

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	-	-	-	-	-	-
CO2	3	-	3	-	-	-	-
CO3	3	-	-	-	-	-	-
CO4	-	-	3	-	-	-	-
CO5	-	-	3	-	-	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/discussion/quiz/seminar/presentation
- Project Evaluation
- Internal Exam
- End semester exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	1			1
CO 2	✓	1	1	<i>✓</i>
CO 3	✓	1		✓
CO 4	1	1	✓	✓
CO 5	✓	1	✓	 Image: A second s

ZOOLOGY (Syllabus 2024 Admn. onwards)

Mar Ivanios College (Autonomous)

Discipline	ZOOLOGY							
Course Code	MIUK1MDCZOO10	MIUK1MDCZOO100.1						
Course Title	LIFESTYLE DISEA	SES AND I	MANAGEM	ENT				
Type of Course	MDC							
Semester	Ι							
Academic	100-199							
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours/Week			
	3	2 hours		2 hours	4 hours			
Pre-requisites	Students should have	an interest in	health and v	wellness.				
Course	There is a significant	increase in	life style dis	sease due to f	faulty diet and			
Summary	sedentary life style.	This cour	se will enha	ance knowled	lge and skills			
	towards management of life style by addressing risk factors such as							
	unhealthy diet, physi	cal inactivit	y and stress	towards ach	ieving healthy			
	approach to life.							

Detailed Syllabus:

Module	Unit	Content	Hrs				
Ι		INTRODUCTION TO LIFE STYLE DISEASES	13				
	1	Concept of lifestyle diseases, Non Communicable diseases and types.	2				
	2	Importance of lifestyle in preventing disease development.	2				
	3	Medical, Physical, Nutritional, Psycho-Social and behavioural aspects of health.	5				
	4	4 Healthy habits: Diet, Yoga & meditation, Exercise Unhealthy habits: Substance abuse (smoking, alcohol), addiction to technology. Brief description only.					
II		MAJOR LIFE STYLE DISEASES					
	5	Diabetes- Type-1 and Type-2: Characteristics, Causes, Diagnosis, Prevention and Management (Diet, Exercise, Drugs).	2				
	6	Obesity: Body mass index, Factors leading to obesity, Prevention and Management.	3				
	7	Atherosclerosis and Cardiovascular diseases: Myocardial infraction, congestive heart failure, Ischemic diseases-Causes, Diagnosis and Management	5				
	8	Mental health and happy hormones. Methods to improve mental wellbeing.	2				
III		CANCER AS A LIFESTYLE DISEASE	20				
	9	Smoking, Physical activity, Obesity, Diagnosis -screening, blood test,	3				

	Xray, CT Scan & endoscopy brief description	
10	Prevention: Dietary, Medication, Vaccination, Screening.	3
11	Management - Surgery, Chemotherapy, Radiation, Palliative care-brief	4
	outline	
	ACTIVITIES	10
12	Blood glucose monitoring using Glucometer.	
13	Blood pressure monitoring at home.	
14	Community awareness program for life style diseases.	
15	Diet management practices.	
16	Debate/Discussions/Seminars.	

Suggested Readings:

- 1. Surendra G Gattani., (2017). Lifestyle Diseases. Nirali Prakashan.
- 2. M. Kumar and R. Kumar., (2005). Guide to Prevention of Lifestyle Diseases. Deep & Deep publications Pvt. Ltd.
- 3. Holt, Rinehart and Winston Staff., (2004). A Lifetime of Health Lifestyle Diseases. Holt McDougal.
- 4. K V Ramani, Hemlatha Ramani, Gunjan y Trivedi, Vishwanathan p, Lakshmi m and Anita Verma (2022). Preventing insidious lifestyle diseases. Book venture.
- 5. Dr. A. Banerjee., (2017). Yoga for Lifestyle Diseases. Sports Publication.

No.	Upon completion of the course the graduate will be	Cognitive	PSO
	able to	Level	addressed
CO-1	Create an awareness on lifestyle associated health	U, E	PSO-5,6
	issue.		
CO-2	List and define various life style associated diseases.	R, U	PSO-5,6
CO3	Demonstrate the symptoms and method of diagnosis of	R, U	PSO-5, 6
	lifestyle diseases.		
CO4	Build and Practice healthy habits. Develop skills for the	Ap, C	PSO-5,6
	management of life style diseases.		
CO 5	Practical approaches for life style disease management	Ар	PSO- 5,6
	and awareness.		

Course Outcomes

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Creat

Name of the Course: Lifestyle Diseases and Management

Credits: 3:1 (Lecture: Practical)

CO No.	CO	РО	PSO	Cognitive Level	Knowledge Category	Lecture (L) /Tutorial (T)	Practical (P)
1	1	1,2	5, 6,	U, E	F, C, P	L/T	
2	2	1,2	5,6,	R, U	F, C,P	L/T	
3	3	1,2	5,6	R, U	F, C,P	L/T	
4	4	1,2	5,6	Ap, C	F, C, P	L/T	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO 1	-	-	-	-	3	3	-	-
CO 2	-	-	-	-	3	3	-	-
CO 3	-	-	-	-	3	3	-	-
CO 4	-	-	-	-	3	3	-	-
CO 5					2	2		

Mapping of COs with PSOs and POs :

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	3	-	-	-	-	-
CO2	3	3	-	-	-	-	-
CO3	3	3	-	-	-	-	-
CO4	3	3	-	-	-	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/discussion/quiz/seminar/presentation
- Project Evaluation
- Internal Exam
- End semester exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark

SEMESTER – II

Mar Ivanios College (Autonomous)

Discipline	ZOOLOGY							
Course Code	MIUK2DSCZOO102	MIUK2DSCZOO102.1						
Course Title	ANIMAL DIVERSI	TY AND EC	COLOGICA	L INTERAC	CTIONS II			
Type of Course	DSC							
Semester	II	П						
Academic	100 - 199	100 - 199						
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours/Week			
	4	3 hours	-	2 hours	5			
Pre-requisites	Knowledge on gener	al characteris	stics of inver	tebrate phyla.				
Course	The course on anima	al diversity i	s a solid fou	ndation on a	nimal biology			
Summary	and ecology. The stru	ctural and fu	inctional ada	ptation of anim	mals and their			
	ecological role and in	ecological role and interactions are emphasised. The course prepares the						
	students for further s	studies or car	reers in wild	life conservat	tion, research,			
	environmental consul	ting, educati	on, and relate	ed fields.				

Detailed Syllabus:

Module	Unit	Content	Hrs				
Ι		PHYLUM ANNELIDA	14				
	1	Salient features, classifications. Class Polychaeta eg. Aphrodite,	5				
		Arenicola; Class: Oligochaeta eg. Nereis, Mention Heteroneries;					
		Class: Hirudinaria (Parasitic adaptations) eg. Leech, Haemadipsa.					
	2	Earthworm, Ecological interactions, Vermiculture	7				
	3	Phylum Onychophora: Salient features. eg. Peripatus (Mention	2				
		afinities and evolutionary significance).					
II		PHYLUM ARTHROPODA	14				
	4	Salient features, classifications. eg. Cockroach, Limulus (evolutionary	6				
		significance), Eupagurus, Sacculina (Parasitic adaptations and					
		castration), Termite, Honey bee. Ecological interactions and economic					
		importance of arthropods. Sericultue, Apiculture					
	5	Type Study-Penaeus (Mention larval stages of penaeus)	8				
III		PHYLUM MOLLUSCA	10				

	6	Salient features, classifications. Classes- Monoplacophora eg. Neopilina; Amphineura eg. Chiton; Aplacophora eg. Neomenia, Gastropoda eg. Pila; Scaphopoda eg. Dentalium; Pelicypoda eg. Perna, Teredo; Cephalopoda eg. Sepia, Octopus.	5
IV	7	Pearl Culture, Mussel Culture, Economic importance of mollusca,	5 7
IV		PHYLUM ECHINODERMATA	-
	8	Salient features, classifications. Classes- Asteroidea eg. <i>Asterias</i> ; Ophiuroidea eg. <i>Ophiothrix</i> ; Echinoidea eg. <i>Echinus</i> ; Holothuroidea eg. Sea cucumber, Crinoidea, eg. Sea lily. Water vascular system. Economic importance of Echinodermata.	5
	9	Phylum Hemichordata: Salient features eg: Balanoglossus	2
V		PRACTICUM	30
	10	Identification and classification of the following specimens Phylum Annelida – Earthworm, Nereis, Leech, Aphrodite, Arenicola –Any 3 Phylum Onychophora – Peripatus Phylum Monychophora – Limulus, Eupagurus, Sacculina, Honey bee, Lepisma, Scorpion –Any 5 Phylum Mollusca – Chiton, Pila, Xancus, Dentalium, Perna, Mytilus, Teredo, Sepia, Octopus -Any 5 Phylum Echinodermata – Starfish, Brittle star, Sea urchin, Sea cucumber, Sea lily Major Dissections Earthworm – Nervous system Prawn – Nervous system - Any 2 Minor Dissections Earthworm – Body setae Nereis – parapodium Cockroach – mouth parts Honey bee – mouth parts / mosquito - mouth parts Prawn – appendages- Any 4	

References

- 1. Barnes, R.D. (1987). Invertebrate Zoology. W. B. Sunders. New Delhi.
- Ekambaranatha Ayyar M. (1990). A Manual of Zoology. Vol. 1. Invertebrata- Part 1 & Part11. S. Viswanathan Printers and Publishers.Pvt. Ltd.
- 3. Hickman, C.P and Roberts, L.S. (1994). Animal Diversity. Wm. C. Brown, Dubuque, IA.
- 4. Hyman, L. H. (1942). The invertebrate volumes. Mc Gew Hill.
- 5. Jorden, E.L and Verma, P.S. (2000). Invertebrate Zoology. S. Chand andCo Ltd. New Delhi.
- 6. Kapoor, V.C. (1994). Theory and Practice of animal taxonomy. Oxford & IBH Publishing Co, New Delhi.

- 7. Kotpal, R.L, Agarwal, S.K. and R.P. Khetarpal. (2002). Modern text book of Zoology Invertebrates.
- 8. Mayer, E. (1980). Principles of Systematic Zoology. Tata Mc Graw Hill Publishing Co, New Delhi.

No.	Upon completion of the course the graduate will be	Cognitive	PSO
	able to	Level	addressed
CO-1	Identify and classify invertebrate Taxa based on key morphological characteristics	U, Ap,	PSO-1,2
CO-2	List out the ecological importance of higher invertebrates in various ecosystems, including their roles as predators and prey.	R, U	PSO-1,2
CO-3	Develops skill to perform various dissections in invertebrates.	An, C	PSO-1,5
CO-4	Developing skills in fieldwork and laboratory techniques in taxonomic field.	U, Ap	PSO-1,5,
CO-5	Evaluate the economic impact of invertebrates on human societies and ecosystems.	Ap,	PSO-1,
CO-6	Illustrates the affinities and evolutionary significances of organisms.	U,An	PSO-1,3.
CO-7	Lists the ecological interactions and economic importance of arthropods	An, E	PSO-1, 4,

Course Outcomes

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: ANIMAL DIVERSITY & ECOLOGICAL INTERACTIONS-II

Credits: 4 3:1 (Lecture: Practical)

CO No.	СО	POs	PSOs	Cognitive Level	Knowledge Category	Lecture (L)/ Tutorial (T)	Practical (P)
1	Identify and classify invertebrate Taxa based on key morphological characteristics	1	PSO- 1,2	U, Ap	F, C	L	P
2	List out the ecological importance of higher invertebrates in various ecosystems, including their roles as predators and prey.	1	PSO- 1,2	R, U	F,P	L	
3	Develops skill to perform various dissections in	1	PSO- 1,5	An, C	F, P.		Р

	invertebrates.						
4	Developing skills	1	PSO-	U, Ap	F	L	Р
	in fieldwork and		1,5,				
	laboratory						
	techniques in						
	taxonomic field.						
5	Evaluate the	1	PSO-	Ap,	F	L	Р
	economic		1,				
	impact of						
	invertebrates on						
	human societies						
	and ecosystems.						
6	Illustrates the	1	PSO-	U,An	F	L	
	affinities and		1,3.				
	evolutionary						
	significances of						
	organisms.						
7	Lists the	1	PSO-	An, E	F,C	L	Р
	ecological		1, 4,				
	interactions and						
	economic						
	importance of						
	arthropods						

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs: Animal Diversity & Ecological Interactions-II

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO 1	3	2	-	-	-	-	-
CO 2	3	3	-	-	-	-	-
CO 3	3	-	-	-	3	-	-
CO 4	3	-	-	-	3	-	-
CO 5	3	-	-	-	-	-	-
CO6	3	-	3	-	-	-	
CO7	3	-	-	3	-	-	-

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	-	-	-	-	-	-
CO2	3	-	-	-	-	-	-
CO3	3	-	-	-	-	-	-

CO4	3	-	-	-	-	-	-
CO5	3	-	-	-	-	-	-
CO6	3	-	-	-	-	-	-
CO7	3	-	-	-	-	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/discussion/quiz/seminar/presentation
- Project Evaluation
- Internal Exam
- End semester exam

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	\checkmark	\checkmark	\checkmark	\checkmark
CO 3		\checkmark	\checkmark	
CO 4	\checkmark	\checkmark	\checkmark	\checkmark
CO 5	\checkmark	\checkmark		\checkmark
CO 6	\checkmark		\checkmark	\checkmark
CO 7	\checkmark	\checkmark	\checkmark	\checkmark

Discipline	ZOOLOGY							
Course Code	MIUK2DSCZOO103.1							
Course Title	FOREST ECOSYS	ГЕМ AND N	MANAGEM	ENT				
Type of Course	DSC(B/C)							
Semester	II							
Academic	100 – 199							
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours/Week			
	4	3		2	5			
Pre-requisites	Basic knowledge on e	ecosystems.						
Course	This course explores	the interrela	tionships bet	ween forest e	ecosystems and			
Summary	their management. S	Students will	l gain a fou	indational un	derstanding of			
	forest ecology, includ	ling the bioti	c and abiotic	factors that i	nfluence forest			
	structure, function,	structure, function, and biodiversity. The course will also examine						
	principles of forest	management	, focusing o	n sustainable	practices that			
	balance ecological he	alth with the	use of forest	resources.				

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		INTRODUCTION TO FOREST ECOLOGY	15
	1	Forest ecosystems: structure, function, and biodiversity, Characteristics of	5
		major forest types (temperate, tropical, boreal)	
		Forest ecosystem services and values	
	2	Biotic and abiotic factors influencing forest ecosystems.	2
	3	Succession and Species interactions and biodiversity in forests	3
	4	Brief account on silviculture. Agroforestry	2
	5	Forest entomology: Beneficial Insects and their role in forest economy:	3
		Scavenger insects, dung beetles; Pollinators, Predatory insects, and	
		parasitic insects	
II		FOREST PROCESSES	15
	6	Nutrient cycling in forest ecosystems. Role of decomposers and	5
		detritivores in nutrient cycling. Human impacts on nutrient cycling	
	7	The importance of forests in maintaining water quality and preventing soil	5
		erosion. The impact of deforestation on water resources.	
	8	Soil ecology and forest health- Soil formation. Threats to soil health, such	
		as compaction, erosion, and acidification	
III		FOREST MANAGEMENT	5
	9	The Wildlife (Protection)Act 1972, Forest (Conservation) Act 1980,	5
		Environment (Protection)Act1986. International Treaties like CITES,	
		CBD, RAMSAR. The BiologicalDiversity Act, 2002	
IV		MANGROVE ECOSYSTEM	10

	10	Mangrove ecosystem- Types, functions and services	2
	11	Threats to the mangrove ecosystem. Mangrove conservation	2
	12	Brief account on features and adaptations of mangrove fauna	2
	13	Brief account of mangrove ecosystem of India and Kerala	4
V		PRACTICUM	30
	14	Visit to a forest research institute.	
	15	Discussion about global forest ecosystem.	
	16	Identification of faunal diversity of forest ecosystem and report	
		submission.	
	17	Field visit to a forest ecosystem/Nature camp to familiarize the students	
		with forest ecosystem and it ecological services	
	18	Field visit to a mangrove ecosystem and identification of faunal diversity	
		and submission of report.	

Reference:

- 1. Anderson, C. W., & Miller, W. W. (2021). Watershed management: Planning for the 21st
- 2. century. John Wiley & Sons.
- 3. Bruijnzeel, L.A., Hamilton, L.S., and Asdak, C. (2011). Rainforest Hydrology, Ecology and
- 4. Management. Springer.
- 5. Manuel C. & Molles Jr. (2009) Ecology: Concepts and Applications (5th Ed).
- 6. McGraw-Hill International Education. pp 604. ISBN-13: 9780070171688
- 7. Stiling D.P. (2012). Ecology Global Insights and Investigations. McGraw-Hill Companies, pp579.

Course Outcomes

No.	Upon completion of the course the graduate will be	Cognitive	PSO
	able to	Level	addressed
CO-1	Explain the structure, function, and value of forests.	U	3
CO-2	Understand the vital processes within forests and how	U,	2
	human activities can impact them.		
C0-3	Identify faunal diversity of forest and mangrove	U,R	1
	ecosystem		
C0-4	Analyse the complexities of forest management in the	An,Ev	1,3
	country including policy analysis and sustainable		
	practices.		

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Forest ecosystem and Management

Credits: 3:1 (Lecture:Practical)

CO No.	СО	РО	PSO	Cognitive Level	Knowledge Category	Lecture (L)/ Tutorial (T)	Practical (P)
CO-1	Explain the structure,	1	3	U	F, C	L/T	

	function, and value of forests.						
CO-2	Understand the vital processes within forests and how human activities can impact them.	1,3	2	U	F, C	L/T	Р
CO-3	Identify faunal diversity of forest and mangrove ecosystem	6	1	Ар	F, C,P	L/T	Р
CO-4	Analyse the complexities of forest management in the country including policy analysis and sustainable practices.	1,3	1,3	С	F, C,	L/T	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO 1	-	-	3	-	-	-	-	-
CO 2	-	3	-	-	-	-	-	-
CO 3	3	-	-	-	-	-	-	-
CO 4	3	-	2	-	-	-	-	-

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	-	-	-	-	-	-
CO2	3	-	3	-	-	-	-
CO3	-	-	-	-	-	3	-
CO4	1	-	3	-	-	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/discussion/quiz/seminar/presentation
- Project Evaluation
- Internal Exam
- End semester exam

Mapping of COs to Assessment Rubrics

	Midterm Exam	Assignment	Report Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark	\checkmark	\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

Discipline	ZOOLOGY	ZOOLOGY					
Course Code	MIUK2MDCZOO101.1						
Course Title	SCIENTIFIC INSIG	GHTS INTO	SEX EDU	CATION			
Type of Course	MDC						
Semester	II						
Academic	100 - 199						
Level							
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours/Week		
	3	3 hours	-	-	3		
Pre-requisites	An interest and comm						
	receptiveness and will	llingness to e	ngage in resp	pectful constru	ıctive		
	discussions.						
	Foundational knowle	dge in Biolog	gy will be be	neficial.			
Course	This course aims to	provide stu	idents with	a holistic un	derstanding of		
Summary	human sexuality, inc	•	• • •	•			
	aspects. Through ir	nterdisciplina	ry perspecti	ves, students	s will explore		
	topics such as repro						
	sexual diversity, cons	sent, healthy	relationships	, and sexual h	ealth.		

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		BIOLOGICAL FOUNDATIONS OF SEXUALITY	11
	1	Definition and scope of human sexuality. Basic terminologies.	1
	2	Anatomy and physiology of human reproductive systems.	10
		Conception, pregnancy and childbirth.	
		Genetic sex determination in humans.	
		Puberty and sexual development.	
		Hormonal regulation of sexual development and behaviour.	
II		DIVERSITY AND DIMENSIONS OF SEXUALITY	6
	3	Sexual identity, orientation, and gender identity.	6
		Psychological aspects of sexual behaviour.	
		Sociocultural influences on sexuality.	
		Understanding sexual diversity. LGBTQIA+ identities and issues.	
III		RELATIONSHIPS, VALUES AND COMMUNICATION	8
	4	Characteristics of healthy relationships. Gender roles and expectations.	2
	5	Interpersonal communication and negotiation in relationships.	3
		Consent, boundaries, coercion, and marital rape.	
	6	Respecting diverse cultural perspectives. Sexual ethics.	3
IV		SEXUAL HEALTH AND WELLNESS	20
	7	Sexual health and hygiene. Reproductive justice.	3

8	Contraception and birth control.	3
9	Sexually Transmitted Diseases: prevention, testing, and treatment.	4
	ACTIVITIES	10
10	Study of functional anatomy and physiology of human reproductive	
	systems using virtual labs/videos.	
11	Study of the role of sex chromosomes in determining genetic sex and how	
	variations in sex chromosome composition can result in different sex	
	phenotypes (XX – female, XY – male).	
12	Study of sex chromosome disorders - Turner syndrome (45,X), Klinefelter	
	syndrome (47,XXY), and Triple X syndrome (47,XXX).	
13	Group discussions on importance of informed decision-making regarding	
	contraception.	
14	Designing a public health campaign aimed at raising awareness about	
	sexually transmitted infections (STIs) and promoting prevention methods.	
	(posters, brochures, or social media content)	
15	Case study – students present case studies that depict common sexual	
	health issues/ issues specific to LGBTQIA+ individuals and communities/	
	issues involving consent, boundaries, and healthy relationships/	
	reproductive justice.	
16	Discussions/brainstorming on inclusive approaches to sexuality education	
	and support services.	

REFERENCES

- 1. Ganong, W.F. (2019), Review of Medical Physiology, 26th edition. McGraw Hill, New Delhi.
- 2. Hyde, J. S. & Delamater, J.D. (2013), Understanding Human Sexuality, 12th edition, McGraw-Hill Humanities Social.
- Goerling, E & Wolfe, E. (2022), Introduction to Human Sexuality, Openoregon.pressbooks.pub (licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License)
- Rach Cosker-Rowland, Recent Work on Gender Identity and Gender, Analysis, Volume 83, Issue 4, October 2023, Pages 801–820, <u>https://doi.org/10.1093/analys/anad027</u>

Course Outcomes

No.	Upon completion of the course the graduate will be	Cognitive	PSO
	able to	Level	addressed
CO-1	Explain the biological, psychological, and social	R, U	5, 6
	factors that influence human sexuality.		
CO-2	Apply scientific knowledge to promote sexual health,	R, U, Ap,	5, 6
	prevent sexual risks, and address common sexual	An	
	concerns.		
CO-3	Recognize and respect diversity in sexual orientation,	R, U, Ap,	5, 6
	gender identity, and sexual expression.	An	
CO-4	Develop evidence-based strategies for effective	U, Ap, An,	5,6
	communication, consent, and healthy relationships.	E, C	
CO-5	Demonstrate empathy, sensitivity, and	U, An, Ap,	5, 6
	professionalism in addressing sexuality-related issues	Е	

and supporting individuals with diverse needs.

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: SCIETIFIC INSIGHTS INTO SEX EDUCATION

Credits: 3:0 (Lecture:Practical)

CO No.	СО	PO	PSO	Cognitive Level	Knowledge Category	Lecture (L)/ Tutorial (T)	Practical (P)
CO-1	Explain the biological, psychological, and social factors that influence human sexuality.	1	5,6	R, U	F, C	L	
CO-2	Apply scientific knowledge to promote sexual health, prevent sexual risks, and address common sexual concerns.	1,7	5,6	R, U, Ap, An	F, C, P	L	Р
CO-3	Recognize and respect diversity in sexual orientation, gender identity, and sexual expression.	2,7	5,6	R, U, Ap, An	F, C, P	L	Р
CO-4	Develop evidence-based strategies for effective communication, consent, and healthy relationships.	4,7	5,6	U, Ap, An, E, C	F, C, P,M		Р
CO-5	Demonstrate empathy, sensitivity, and professionalism in addressing sexuality- related issues and supporting	2,4,7	5,6	U, An, Ap, E	F, C, P,M	L	Р

individuals with			
diverse needs.			

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO 1	-	-	-	-	1	3	-	-
CO 2	-	-	_	-	1	3	-	-
CO 3	_	_	_	_	1	3	_	_
CO 4	-	-	-	-	1	3	-	-
CO 5	_	_	_	_	1	3	_	_

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	-	-	-	-	-	3
CO2	3	-	-	-	-	-	3
CO3	-	3	-	-	-	-	3
CO4	-	-	-	3	-	-	3
CO5	-	3	-	3	-	-	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/discussion/quiz/seminar/presentation
- Project Evaluation
- Internal Exam
- End semester exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark

CO 2	\checkmark	\checkmark	\checkmark
CO 3	\checkmark	\checkmark	\checkmark
CO 4	\checkmark	\checkmark	
CO 5	\checkmark	\checkmark	

SEMESTER – III

Discipline	ZOOLOGY					
Course Code	MIUK3DSCZOO200).1				
Course Title	CHORDATA					
Type of Course	DSC					
Semester	III					
Academic	200 - 299					
Level						
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours/Week	
	4	3 hours	-	2 hours	5	
Pre-requisites	Basic knowledge on t	he general cl	haracteristic (of chordates		
Course	The phylum Chordata	a represents a	a key evolutio	onary lineage	that has given	
Summary	rise to diverse and su	ccessful anin	nal forms. Th	e transition fi	rom aquatic to	
	terrestrial environments among chordates has been particularly					
	significant, leading to the emergence of amphibians, reptiles, birds, and					
	mammals. This cours	1	-	•	brate animals,	
	focusing on their dive	ersity, behavi	our, and ecol	ogical roles.		

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		INTRODUCTION TO PHYLUM CHORDATA	10
	1	Salient features, Classifications.	1
	2	Subphylum Urochordata- Salient features	4
		Class Larvacea eg. Oikopleura; Class Ascidiacea eg. Ascidia	
		(Mention retrogressive metamorphosis) and Class Thaliacea eg. Salpa.	
	3	Subphylum Cephalochordata- Salient features eg. Amphioxus	1
	4	Subphylum Vertebrata: Salient features, classifications.	4
		Division 1 Agnatha - Salient features	
		Class Cyclostomata eg. Petromyzon, Class Ostracodermi;	
		Division 2 Gnathostomata, Salient features	
		Classification into Super class Pisces and Tetrapoda.	
II		SUPER CLASS PISCES	10
	5	Salient features, Classifications. Class Placodermi,	4
		Class Chondrichthyes.	

	6	Sub class Elasmobranchii eg. Narcine,	6
		Sub class Holocephali eg. Chimaera; Class Osteichthyes	
		Sub class Choanichthyes Order1 Crossoptergii eg Latimeria.	
		Order 2 Dipnoi eg. Protopterus,	
		Subclass Actinopterygii Super order Chondrostei eg Acipenser.	
		Super order Holostei eg Lepidosteus.	
		Super order Teleostei eg Anabas, Clarius, Saccobranchus,	
		Ophiocephalus, Echeneis.	
		General topic: Accessory respiratory organs in fishes	
III		SUPER CLASS TETRAPODA:	15
	7	Class Amphibia: Salient features, Classifications.	4
		Order Urodela eg. Amblystoma, Order Anura eg. Hyla, Bufo, Rana,	
		Order Apoda eg. Ichthyophis.	
		General topic: Parental care in amphibia.	
	8	Class Reptilia: Salient features, Classification.	7
		Subclass Anapsida Order Chelonia eg. Chelone; Subclass Parapsida eg.	
		Ichthyosaurus; Subclass Diapsida- Order Rhynchocephalia eg.	
		Sphenodon, Order Squamata- Suborder Lacertilia eg. Calotes,	
		Chameleon, Draco, Hemidactylus, Suborder Ophidia eg. Naja naja,	
		Vipera, Bungarus, Enhydrina, Ptyas, Lycodon, Tropidonotus, Dryophis,	
		Typhlops and Eryx johni, Suborder Crocodilia eg. Crocodilus, Alligator;	
		Subclass Synapsida eg Cynognathus.	
		General topic: Identification of poisonous and non-poisonous snakes.	
	9	Class Aves: Salient features, Classifications. Subclass Archeornithes eg	4
		Archeopteryx; Subclass Neornithes- Super order Paleognathae eg.	
		Sruthio and Emu, Super order Neognathae eg. Grey heron, Vulture, Kite,	
		Pavo, Koel, Owl, Woodpecker, Crow.	
		General topic: Flight adaptations of birds.	
IV		CLASS MAMMALIA	10
		General characters and classification - Subclass Prototheria eg.	10
		Tachyglossus; Subclass Metatheria eg. Macropus; Subclass Eutheria -	
		Order Insectivora eg. Paraechinus, Order Dermoptera eg. Galeopithecus,	
		Order Chiroptera eg. Pteropus, Order Primates eg. Loris, Orangutan,	
		Order Carnivora eg. Leo sps, Felis domesticus, Canis familiaris,	
		Herpestus, Order Cetacea eg. Delphinus, Order Perissodactyla eg. Equus,	
		Order Artiodactyla eg. Camelus, Hippopotamus, Order Proboscidia eg.	
		Elephas. Order Sirenia eg. Dugong, Order Hyracoidea eg. Procavia,	
		Order Rodentia eg. Rattus, Order Lagomorpha eg. Oryctolagus, Order	
		Edentata eg. Dasypus novemcinctus (Armadillo), Order Pholidota eg.	
		Manis, Order Tubilidentata eg. Orycteropus.	
		Type: Rabbit (Oryctolagus cuniculus):	
		External features(Self study), Digestive system, Skeletal System,	

	Vertebral column: Atlas, Axis, Lumbar, Pectoral and Pelvic girdles, Respiratory system, Circulatory system, Heart, Arterial system and Venous system, Nervous system: Brain – Dorsal and ventral view and Urinogenital system. General topic: Aquatic adaptations in Mammals.	
V	 Practicum: Identification and classification of the following specimens Protochordates – Ascidia, Amphioxus (entire) Pisces - 2 cartilaginous fishes, 2 fishes with accessory respiratory organs, 2 edible fishes and 2 culture fishes. Amphibia - Any 3 (representing the three orders). Reptilia - 2 poisonous and 2 non-poisonous snakes, Draco, Chameleon Mammals – Bat, Any 2 Mammals Fishes - Placoid scales of Scoloidon and cycloid and ctenoid scales of Anabas Osteology Rabbit limb bones, girdles, typical vertebra, atlas, axis, thoracic and lumbar vertebrae and lower jaw. Turtle - carapace and plastron Visit to Zoo/Museum/Nature Camp- Submit Report Bird watching: Prepare a field diary on campus bird watching and submit a report. Identification on different kinds of feathers 	30

Reference

- Bhaskaran, K. K. and Biju Kumar, A. (2003). Chordate Zoology. Manjusha Publications. Calicut.
- 2. Ekambaranath Iyer. (2000). A Manuel of Zoology. Vol. II S. Viswanathan and Co.
- 3. Jordan E. L. and P. S. Verma. (2002). Chordate Zoology. S. Chand and Co. New Delhi
- 4. Kotpal, R.L. (2000). Modern Textbook of Zoology: Vertebrates. Rastogi Publications,
- Meerut.Verma, P.S. (2002). A Manual of Practical Zoology Chordates. S. chand and Co. Ltd.
- 6. William S. Beck, Karel, F., Liem and George Gaylord Simpson. (2000). Life: An introduction to biology. Harper Collins Publishers, New York.
- 7. Young J.Z. (2006). The life of Vertebrates. Oxford University

No.	Upon completion of the course the graduate will be able	Cognitive	PSO						
	to	Level	addressed						
CO-1	Identify and classify invertebrate Taxa based on	U, Ap	PSO-1,2						
	key morphological characteristics								
CO-2	Outline the diversity of chordates, including	R, U	PSO-1,2						
	vertebrates (fishes, amphibians, reptiles, birds,								
	mammals) and selected invertebrate chordates (like								
	tunicates and lancelets).								
CO-3	Explore the evolutionary relationships within the	U, R, An	PSO-1,3						
	phylum Chordata and understand how chordate								
	characteristics have evolved over time.								
CO-4	Illustrate the behaviour and communication	U, R, An	PSO-1,2,						
	strategies of different chordate groups, from								
	complex social behaviours in mammals to unique								
	communication methods in birds.								
CO-5	Identify structural similarities and differences	Ap, An	PSO-1,3						
	across different chordate classes.								
CO-6	Gain experience in conducting field surveys,	Ap, U	PSO-1,3						
	sampling techniques, and observational studies of								
	chordates in their natural habitats.								
CO-7	Practice documenting field observations and	Ap. U	PSO-1,3,5,						
	experimental results, and effectively communicate								
	findings through written reports and presentations.								
D Dama									

Course Outcomes

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: CHORDATA

Credits: 4 3:1 (Lecture: Practical)

CO No.	СО	POs	PSOs	Cognitiv e Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1	Identify and classify invertebrate Taxa based on key morphological characteristics	1	PSO- 1,2	U, Ap	F, C	L	Р
2	Outline the diversity of chordates, including vertebrates (fishes, amphibians, reptiles, birds, mammals) and selected invertebrate chordates (like tunicates and	1	PSO- 1,2	R, U	F,P	L	

	lancelets).						
3	Explore the evolutionary relationships within the phylum Chordata and understand how chordate characteristics have evolved over time.	1	PSO- 1,3	An, C	F, P.	L	
4	Illustrate the behaviour and communication strategies of different chordate groups, from complex social behaviours in mammals to unique communication methods in birds.	1	PSO- 1,2,	U, Ap	F	L	Р
5	Identify structural similarities and differences across different chordate classes.	6	PSO- 1,3	Ap,	F	L	Р
6	Gain experience in conducting field surveys, sampling techniques, and observational studies of chordates in their natural habitats.	1	PSO- 1,3	U,An	F	L	Р
7	Practice documenting field observations and experimental results, and effectively communicate findings through written reports and presentations.	1	PSO- 1,3,5,	An, E	F,C		Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs: Chordata

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO 1	3	2	-	-	-	-	-	-
CO 2	3	3	-	-	-	-	-	-
CO 3	3	3	-	-	-	-	-	-
CO 4	3	3	-	-	-	-	-	-
CO 5	3	-	3-	-	-	-	-	-
CO6	3	-	3	-	-	-		-
CO7	3	-	3	-	3	-	-	-

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	-	-	-	-	-	-
CO2	3	-	-	-	-	-	-
CO3	3	-	-	-	-	-	-
CO4	3	-	-	-	-	-	-
CO5	-	-	-	-	-	3	-
CO6	3	-	-	3	-	-	-
C07	3	-	-	-	-	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/discussion/quiz/seminar/presentation
- Project Evaluation
- Internal Exam
- End semester exam

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	\checkmark	\checkmark	\checkmark	\checkmark
CO 3	\checkmark	\checkmark	\checkmark	\checkmark
CO 4	\checkmark	\checkmark	\checkmark	\checkmark
CO 5	\checkmark	\checkmark	\checkmark	\checkmark
CO 6	\checkmark		\checkmark	
CO 7	\checkmark		\checkmark	

Mapping of COs to Assessment Rubrics:

Discipline	ZOOLOGY						
Course Code	MIUK3DSCZOO201	.1					
Course Title	ECOTOXICOLOGY	: CHEMICA	L IMPACTS	ON ECOSY	STEMS AND		
	HEALTH						
Type of Course	DSC (B/C)						
Semester	III						
Academic	200 - 299						
Level							
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours/Week		
	4	3 hours	-	2 hours	5		
Pre-requisites	A foundational under	standing of b	viological cor	ncepts such as	cell structure		
	and function, ecology	, and organis	smal biology				
	A basic knowledge of	f chemistry is	s essential, in	cluding conce	epts such as		
	chemical bonding, ch	emical reacti	ions, and env	ironmental ch	emistry.		
Course	The course provides						
Summary	impacts of chemical	contaminant	s on the env	ironment and	human health.		
	Through lectures, cas	se studies, a	nd practical	exercises, stud	dents will gain		
	knowledge of the sources, fate, and transport of environmental pollutants,						
	mechanisms of toxicity, risk assessment, and management strategies. By						
	the end of the cour		-				
	knowledge necessary			-			
	to the development of	of sustainabl	e solutions f	or environme	ntal protection		
	and human health.						

Detailed Syllabus:

Module	Unit	Content	Hrs				
Ι		INTRODUCTION TO ECOTOXICOLOGY	4				
	1	Definition and scope of ecotoxicology	4				
		Historical context and key concepts					
		Interactions between pollutants and ecosystems					
II	ENVIRONMENTAL CONTAMINANTS AND MECHANISMS OF						
		TOXICITY					
	2 Anthropogenic sources of environmental contaminants.						
		Transport and dispersion of contaminants in air, water, and soil.					
		Bioaccumulation and biomagnification of toxic substances.					
	3	Mechanisms of Toxicity.	5				
		Toxicokinetics: Absorption, distribution, metabolism, and excretion of					
		toxicants.					
	4	Effects of environmental contaminants on wildlife and ecosystems.	2				
III	R	ISK ASSESSMENT AND MANAGEMENT OF CONTAMINATED	21				
		ENVIRONMENTS					

			0			
	5	Hazard identification and dose-response relationships. Dose – response	2			
		curve. LC ₅₀ , LD ₅₀ , sublethal concentration. Acute, subacute and chronic				
		toxicity.				
	6	Toxicity tests. Bioassays. OECD guidelines for testing of chemicals.	2			
	7	Exposure assessment: Routes of exposure, exposure levels.	2			
	8 Health effects of environmental pollutants on human populations.					
	9 Analysis of major ecotoxicological incidents (e.g., chemical spills,					
		industrial accidents)				
	10	Environmental monitoring techniques - air quality monitoring, water	6			
		quality monitoring, soil quality monitoring, and biodiversity monitoring				
	11	Strategies for prevention of pollution.	2			
	12	Remediation: physical, chemical and biological techniques.	2			
IV	EMERGING ISSUES IN ECOTOXICOLOGY					
	13	Emerging contaminants: Microplastics, pharmaceuticals, endocrine	4			
		disruptors.				
	14	Climate change and its impacts on ecotoxicology.	2			
	15	Future directions and priorities in ecotoxicological research.	1			
V		PRACTICUM	30			
	16	Assessment of LC_{50} of a chemical using Brine shrimp lethality bioassay.				
	17	Water quality analysis of freshwater ecosystems.				
	18	Comet assay to evaluate DNA damage in cells on exposure to chemicals.				
	19	Field visits to industrial sites, agricultural areas, or urban environments to				
		assess potential sources of contamination. Students will identify pollution				
		hotspots, collect environmental samples, and document the observations.				
	20	Case study of any one ecotoxicological incident that had implications on				
		human health.				
	21	Students will conduct a comprehensive literature review on any one				
		contaminant of emerging concern and present their findings.				

REFERENCES

- 1. Newman, M. C. (2010). Ecotoxicology: A Comprehensive Treatment. CRC Press.
- Newman, M. C. (2010). Fundamentals of Ecotoxicology: The Science of Pollution. CRC Press.
- 3. Hood, E. (2014). Essentials of Environmental Toxicology: The Effects of Environmentally Hazardous Substances on Human Health. Wiley.
- Kumari, A., Rajput, V. D., Mandzhieva, S. S., Minkina, T., & van Hullebusch, E. D. (2024). Emerging Contaminants. Sustainable Agriculture and the Environment (1st ed.). Elsevier.
- 5. Ming-Ho Yu, Humio Tsunoda. (2000). Environmental Toxicology: Biological and Health Effects of Pollutants. CRC Press.

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Explain the principles and concepts of ecotoxicology	R, U	2,7

CO-2	Explain the sources and mechanisms of toxicity of environmental contaminants and their effects on wildlife and human health.	R, U	2,7
CO-3	Prepare dose response curve for a chemical and establish the LC_{50} and sublethal concentrations of toxicants.	U, Ap, An	5,7
CO-4	Conduct bioassays using model organisms and establish the level of toxicity of a substance.	An, Ap, E	5,7,8
CO-5	Assess the level of pollution in an ecosystem using different analytical techniques.	An, Ap, E	5,7,8
CO-6	Prepare reports and present case studies and real-world examples of ecotoxicological incidents.	An, Ap, E, C	2,7,8
CO-7	Integrate the knowledge acquired through the course to predict future directions in ecotoxicological research.	An, Ap, E, C	7,8

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: ECOTOXICOLOGY: CHEMICAL IMPACTS ON ECOSYSTEMS AND HEALTH

Credits: 3:1:(Lecture:Practical)

CO			PSO	Cognitive	Knowledge	Lecture (L)/	Practical
No.				Level	Category	Tutorial (T)	(P)
CO-1	Explain the principles and concepts of ecotoxicology	1	2,7	R, U	F, C	L	
CO-2	Explain the sources and mechanisms of toxicity of environmental contaminants and their effects on wildlife and human health.	1,3	2,7	R, U	F, C	L	Р
CO-3	Prepare dose response curve for a chemical and establish the LC_{50} and sublethal concentrations of toxicants.	1,2,6	5,7	U, Ap, An	F, C,P	L	Р
CO-4	Conduct bioassays using model organisms and establish the level of toxicity of a substance.	1,2,6	5,7,8	An, Ap, E	F, C,P	L	Р
CO-5	Assess the level	1,3,6	5,7,8	An, Ap, E	F, C, P		Р

	of pollution in an ecosystem using different analytical techniques.						
CO-6	Prepare reports and present case studies and real- world examples of ecotoxicological incidents.	1,3,6	2,7,8	An, Ap, E, C	F, C, P		Р
CO-7	Integrate the knowledge acquired through the course to predict future directions in ecotoxicological research.	1,3,6	2,7	An, Ap, E, C	F, C, P, M	L	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO 1	-	3	-	-	-	-	3	-
CO 2	-	3	-	-	-	-	3	-
CO 3	-	-	-	-	3	-	3	-
CO 4	-	-	-	-	3	-	3	1
CO 5	-	-	-	-	3	-	3	1
CO 6	-	3	-	-	-	-	3	2
CO 7	-	2	-	-	-	-	2	-

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
C01	3	-	-	-	-	-	-
CO2	3	-	3	-	-	-	-
CO3	3	2	-	-	-	3	-
CO4	3	2	-	-	-	3	-
CO5	3	-	2	-	-	3	-
CO6	3	-	2	-	-	3	-
CO7	3	-	2	-	-	3	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/discussion/quiz/seminar/presentation
- Project Evaluation
- Internal Exam
- End semester exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	~		\checkmark
CO 5	\checkmark	\checkmark		
CO 6	\checkmark	\checkmark		
CO 7	\checkmark	\checkmark		

Discipline	ZOOLOGY							
Course Code	MIUK3DSEZOO200	MIUK3DSEZOO200.1						
Course Title	BASIC HUMAN AN	NATOMY						
Type of Course	DSE							
Semester	III							
Academic	200 - 299							
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours/Week			
	4	3 hours	-	2 hours	5			
Pre-requisites	A fundamental under	0	0	cepts such as	cells, tissues,			
	organs, and organ sys	stems is reco	mmended.					
Course	This course provide	es an introdu	actory explo	ration of the	structure and			
Summary	organization of the h	uman body,	focusing on	key anatomic	al systems and			
	their functions. Emp							
	histology, and the g	gross anatom	y of major	organs. By t	he end of the			
	course, students will	be equipped	with the kno	wledge necess	sary to identify			
	and describe the anat	tomical struc	tures of the	human body a	and understand			
	their roles in physiolo	ogical proces	ses.					

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		INTEGUMENTARY & MUSCULOSKELETAL SYSTEM	14
	1	Definition and importance of anatomy. Anatomical terminology: position,	2
		planes, and body cavities.	
		Introduction to histology: four primary types of tissues - connective	
		tissue, epithelial tissue, muscle tissue, and nervous tissue.	
	2	Anatomy of skin. Epidermal derivatives.	2
	3	Types of muscles – skeletal, smooth and cardiac, their location and	2
		function.	
		Structure of skeletal muscle.	
	4	Anatomy of Bones. Major bones of the axial and appendicular skeleton –	8
		vertebral column, ribs, sternum, pectoral and pelvic girdle, limb bones.	
		Types of joints. Structure of a synovial joint.	
		Cartilage, tendons, ligaments.	
II		CARDIOVASCULAR, RESPIRATORY & DIGESTIVE SYSTEMS	10
	5	Functional anatomy of heart.	4
		Major blood vessels – arteries, veins and capillaries, their roles in	
		circulation.	
		Lymphatic system. Lymphoid organs.	
	6	Basic anatomy and functions of the respiratory tract and lungs.	3
		Mechanism of breathing.	

	7	Structure of digestive system. Functional layers of intestinal wall.	3				
		Digestive glands.					
III		NERVOUS SYSTEM AND SENSE ORGANS	13				
	8	Divisions of nervous system. Anatomy of brain and spinal cord.	5				
		Peripheral nervous system. Autonomic nervous system.					
	9	Types of sense organs and receptors.	4				
	Structure of eye – functional layers of retina.						
	10	Functional anatomy of ear.	2				
	11	Anatomy of taste and olfactory receptors.	2				
IV		URINARY & REPRODUCTIVE SYTEMS	8				
	12	Structure of kidney and nephrons.	2				
	13	Anatomy of Male reproductive system – testes, accessory organs and	3				
		glands.					
	14	Female reproductive system – ovaries, accessory organs and glands.	3				
V		PRACTICUM	30				
	15	Study of skeletal system of man using models.					
	16	Identification of different bones based on their structure.					
	17	Study of anatomy of major organs using models/virtual lab – heart,					
		lungs, brain, eye, ear, testes, ovary – Draw and label diagrams and					
		identification using pictogram/modles.					
	18	Study of different types of tissues using permanent slides.					

REFERENCES

- Scanlon, V. C., & Sanders, T. (2007). Essentials of anatomy and physiology (5th ed.). F. A. Davis Company.
- Guyton, A.C. and Hall, J.E. (1995). Text book of Medical Physiology, 9th edition. W.B. Saunders Co.
- 3. Chaurasia, B.D. (2020). Handbook of General Anatomy. CBS Publishers and Distributors Pvt. Ltd.

Course Outcomes

No.	Upon completion of the course the graduate will be	Cognitive	PSO
	able to	Level	addressed
CO-1	Decribe the structure of different organs in human	R, U	3, 6
	body.		
CO-2	Identify and explain the structural features of bones in	R, U	3,6
	human body.		
CO-3	Explain the structure-function relationships of organ	R, U	3,6
	systems of human body.		
CO-4	Identify different types of cells and tissues based on	U,An,E	3,6
	their structure.		
CO-5	Integrate the knowledge about different organ systems	U, E, Ap	3,6
	to evaluate their functional interrelations.		

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: BASIC HUMAN ANATOMY

Credits: 3:1 (Lecture:Practical)

CO	СО	PO	PSO	Cognitive	Knowledge	Lecture (L)/	Practica
----	----	----	-----	-----------	-----------	--------------	----------

No.				Level	Category	Tutorial (T)	l (P)
CO-1	Decribe the structure of different organs in human body.	1	3,6	R, U	F, C	L	
CO-2	Identify and explain the structural features of bones in human body.	1	3,6	R, U	F, C	L	
CO-3	Explain the structure- function relationships of organ systems of human body.	1	3,6	R, U	F, C	L	
CO-4	Identify different types of cells, tissues, organs and bones based on their structure.	1	3,6	U,An,E	F, C		Р
CO-5	Integrate the knowledge about different organ systems to evaluate their functional interrelations.	1	3,6	U, E, Ap	F, C, P	L	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO 1	-	-	3	-	-	3	-	-
CO 2	-	-	3	-	-	3	-	-
CO 3	-	-	3	-	-	3	-	-
CO 4	-	-	3	-	-	3	-	-
CO 5	-	-	3	-	-	3	-	-

	PO1	PO2	PO3	PO4	PO5	PO6	P07
CO1	3	-	-	-	-	-	-
CO2	3	-	-	-	-	-	-

CO3	3	-	-	-	-	-	-
CO4	3	-	-	-	-	-	-
CO5	3	-	-	-	-	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/discussion/quiz/seminar/presentation
- Project Evaluation
- Internal Exam
- End semester exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4	\checkmark			\checkmark
CO 5	\checkmark	\checkmark		

Discipline	ZOOLOGY						
Course Code	MIUK3VACZOO200).1					
Course Title	PUBLIC HEALTH	AND MANA	AGEMENT				
Type of Course	VAC						
Semester	III						
Academic	200-299						
Level							
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours/Week		
	3	3 hours	-	-	3		
Pre-requisites	Basic knowledge abo	ut nutrition.					
	Basic understanding a	about health	and hygiene.				
Course	Public health is the	discipline fo	cused on im	proving and	protecting the		
Summary	health of communitie	es and popul	ations throug	gh education,	promotion of		
	healthy behaviours,	disease pre	evention, and	d policy into	erventions. It		
	addresses a wide rat	nge of issue	es such as in	nfectious dise	eases, chronic		
	illnesses, environme	ntal hazards	s, and socia	1 inequalities	s to promote		
	overall well-being on						
	that we consume is o				-		
	course will provide an	-	he importanc	e of disease p	revention and		
	maintenance of hygie	ne.					

Detailed Syllabus:

Module	Unit	Content	Hrs					
Ι		CONCEPT OF PUBLIC HEALTH AND HYGIENE						
	1	Scope and importance of the study, Nutrition and health- Balanced Diet,	3					
	Malnutrition and Over nutrition, Obesity and weight control, Body mass							
		index, Nutritional Deficiencies, Vitamin deficiencies.						
	3	Common food adulterants, food additives, fortification of food	2					
II		HYGIENE	5					
	4	Hygiene: Definition, personal hygiene- body odour, oral hygiene,	5					
		grooming, feminine hygiene, sleep hygiene.						
		Social hygiene –clean living movements, occupational hygiene, food						
		and cooking hygiene, medical hygiene						
		DISEASES AND THEIR CONTROL MEASURES						
III			20					
	5	Common food borne and water borne diseases (gastroenteritis, jaundice,	7					
		cholera, salmonellosis) - causative agents, symptoms, prevention and						
		control.						
		Air borne: common cold, chicken pox, mumps, covid 19						
	6	Sexually transmitted infections – AIDS, genital herpes,	8					

	syphilis, gonorrhoea - causative agents, symptoms, modes of	
	transmission and prevention.	
7	Vector Borne : dengue, chikunguniya, malaria, rat fever and preventive	3
	measures	
8	Lifestyle disease Effects of smoking ,alcoholism and drug abuse.	2
	addiction, deaddiction.	
	PUBLIC HEALTH MANAGEMENT	15
9	Community health- health centres, role of health centres, vaccination and	2
	awareness programme.	
10	Role of government, NGO and other voluntary organizations in public	2
	health management.	
11	First Aid- Precautions and awareness on Personal hygiene	1
	ACTIVITIES	10
12	Visit to Public health Centre	
13	Outreach programs to nearby schools or Anganwadi to create awareness	
	on public health programs and control measures of various diseases	
14	Discussion on various disease outbreak investigations and mitigation and	
	control measures adopted globally and in India	
15	Evaluation of various health programs conducted by the government	
16	Campaign against alcoholism in the campus	
17	Campaign against drug abuse in the campus	
	8 9 10 11 12 13 14 14 15 16	transmission and prevention. 7 Vector Borne : dengue, chikunguniya, malaria, rat fever and preventive measures 8 Lifestyle disease Effects of smoking ,alcoholism and drug abuse. addiction, deaddiction. 9 PUBLIC HEALTH MANAGEMENT 9 Community health- health centres, role of health centres, vaccination and awareness programme. 10 Role of government, NGO and other voluntary organizations in public health management. 11 First Aid- Precautions and awareness on Personal hygiene 12 Visit to Public health Centre 13 Outreach programs to nearby schools or Anganwadi to create awareness on public health programs and control measures of various diseases 14 Discussion on various disease outbreak investigations and mitigation and control measures adopted globally and in India 15 Evaluation of various health programs conducted by the government 16 Campaign against alcoholism in the campus

Reference:

- 1. Birkhead, G. S., Morrow, C. B., Pirani, S. (2020). Essentials of Public Health. United States: Jones & Bartlett Learning.
- 2. Blair, T. S. (2009). Public Hygiene. Canada: Cambridge Scholars Publishing.
- 3. Jatin V. Modi and Renjith S. Chawan. Essentials of Public Health and Sanitation, Part IV.Swaminathan S. Principles of Nutrition and Dietetics.
- 4. Murray, C. J. L. and A.D. Lopez. (1996). The Global Burden Of Disease. World Health Organization.5. Park, J.E. and Park, K. Textbook of Community Health for Nurses.
- 5. Park and Park, (1995) Text book of preventive and social medicine Banarsidas Bhanot Publ. jodhpur- India.
- 6. Schneider, M. (2011). Introduction to Public Health. United States: Jones & Bartlett Learning.
- 7. Verma, S. (1998). Medical zoology, Rastogi Publ.- Meerut- India

Course Outcomes

No.	Upon completion of the course, the graduate will	Cognitive	PSO
	be able to	Level	addressed

CO-1	Practise good health and hygiene	R, U	5
CO-2	Distinguish food adulteration	R, U	5,6
CO-3	Explain the symptoms and mode of transmission of various diseases	R, U	3
CO-4	Explain the health education in India	R, U	3
CO-5	Extend awareness about public health and hygiene	U, Ap	3

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Public Health Management Credits: 3:0 (Lecture:Practical)

CO No.	СО	PO	PSO	Cognitive Level	Knowledge Category	Lecture (L)/ Tutorial (T)	Practical (P)
CO-1	Practise good health and hygiene	1	5	U	F, C	L/T	
CO-2	Distinguish food adulteration	1	5,6	U	F, C	L/T	
CO-3	Explain the symptoms and mode of transmission of various diseases	1	3	U	F, C	L/T	
CO-4	Explain the health education in India	1	3	U	F, C, P	L/T	
CO-5	Extend awareness about public health and hygiene	7	3	U,A	F, C	L/T	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of	COs with	n PSOs and POs :	
	000		

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO 1	-	-	-	-	2	-	-	-
CO 2	-	-	-	-	3	2	-	-
CO 3	-	-	3	-	-	-	-	-
CO 4	-	-	2	-	-	-	-	-
CO 5	-	-	3	-	-	-	-	-

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	-	-	-	-	-	-
CO2	3	-	-	-	-	-	-

CO3	3	-	-	-	-	-	-
CO4	3	-	-	-	-	-	-
CO5	3	-	-	-	-	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment
- Seminar
- Report submission
- Midterm Exam
- Final Exam

Mapping of Cos to Assessment Rubrics

	Internal Exam	Assignment	Report Submission	End Semester Examinations
CO 1	1	1		✓
CO 2	✓	1		\checkmark
CO 3	✓	1		✓
CO 4	1	1		✓
CO 5	1	1	1	\checkmark

SEMESTER – IV

Discipline	ZOOLOGY						
Course Code	MIUK4 DSCZOO20	2.1					
Course Title	SYSTEMATICS, B	IODIVERS	ITY AND C	ONSERVAT	TION		
	BIOLOGY						
Type of	DSC						
Course							
Semester	IV						
Academic	200-299						
Level							
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours/Week		
	4	3	-	2	5		
Pre-requisites	Basic knowledge abo	out classifica	tion of organ	isms, their di	versity and		
	importance of conser	vation.					
Course	Taxonomy is the sc	ience of cla	ssifying and	naming orga	anisms, while		
Summary	systematic descripti	on involves	organizing	and categor	izing species		
-	based on their characteristics, evolutionary relationships, and genetic						
	information. It's a way to understand the diversity of life and how						
	different species are	related to ea	ch other. Sys	tematics is or	ne of the basic		
	sciences that provi	de the fund	lamental fou	indations of	preservation,		
	practise and sustaina	ble managen	nent of the re	sources.			

Detailed syllabus

Module	Unit	Content	Hrs			
Ι	IN	TRODUCTION AND BASIC CONCEPTS OF SYSTEMATICS AND	5			
	TAXONOMY					
	1	Definition ad history of taxonomy	1			
	2	Importance and application of systematics in biology	1			
	3	Taxonomic impediments and its impact in taxonomy, Ethics in taxonomy	1			
	4	Taxonomic Procedures-collection, preservation,	2			
		curating and process of identification.				
II	TAXONOMIC TOOLS AND TECHNIQUES					
	5	Identification: Taxonomic keys: Types of taxonomic	4			
		keys- Simple Dichotomous key, Bracket key,				
		Indented Key, Serial key, Branching key, Circular				
		key, Box key, computer key. Its merits and demerits				
	6	Different zoological types: Holotype, Paratype, Lectotype, Syntype,	3			

		Neotype, Allotype and their significance.	
	7	Systematics Publications: Different types- Short Research papers,	4
		Revision, Monograph, Faunal/Floral, Synopses and Reviews, Handbooks	
		and Manuals, Catalogues and Checklists and Atlases	
	8	International code of zoological nomenclature and its	4
		Law of Priority and Law of Homonymy. Scientific Nomenclature	
		(Uninomial, Binomial Nomenclature and Trinomial Nomenclature	
		(brief account)	
III		TAXONOMIC CLASSIFICATION	10
	9	Kinds of classification: Natural classification, Cladistic/Phylogenetic	3
		classification, Phenetic classification, Biological classification,	
		Omnispective classification and Hierarchical classification	
	10	Hierarchy of classification : Linnean Hierarchy.	2
		Species category -sub species, taxon, category, rank	
	11	Approaches in taxonomy– Morphological, Anatomical, Developmental,	3
		Biochemical (chemotaxonomy), Cytological (Cytotaxonomy), Ecological	
		and Ethological.	
	12	Brief account on Molecular Systematics- DNA barcoding and	2
		Phylogenetic tree	
IV		BIODIVERSITY AND CONSERVATION BIOLOGY	15
	13	Introduction: Definition, levels of biodiversity (genetic diversity, species	3
		diversity and ecosystem diversity), Values of biodiversity.	
		Alpha diversity, Beta diversity and Gamma diversity.	
	14	Causes of biodiversity loss- habitat destruction, deforestation, Invasive	2
		Alien species.	
	15	Strategic species concepts: Keystone species, Ecosystem engineer,	2
		Indicator species and umbrella species, Flagship species.	
	16	Strategies of conservation: in situ- biospheres reserves, National parks,	3
		nature reserves, sanctuaries. Ex situ conservation-botanical gardens, zoos,	
		aquarium.	
		In-vitro Conservation: Gene Banks, Germ plasm bank.	
	17	Earth summit (1992) - Rio Declaration on Environment and Development,	3
		Agenda 21, Forest Principles, Convention on	
		Biological Diversity	
	18	Chipko Movement, Narmada Bachao Andholan (NBA), The Silent Valley	2
		Movement, Madhav Gadgil Report, Kasturirangan committee Report.	
V		PRACTICUM	30
		Identification of specimens using keys- fishes, Prawn, Crab, Insect using	
		key	
		Visit to Zoological Park, National park	
		Documentation of diversity (i)Butterfly (ii) Dragonfly (iii)Ant (iv) Fishes	
		and submission of report	
		Collection and preservation of any five (i) vertebrate (ii) invertebrate and	
		submission of report.	
		and an entry free states and the sta	

	Visit to a molecular biology lab for DNA barcoding technique	

Reference:

- 1. Alfred J.R.B and Ramakrishna.2004. Collection, Preservation and Identification of Animals. Zoological Survey of India Publications.
- 2. David, M. H, Craig Moritz and K.M. Barbara.1996. Molecular Systematics. Sinauer Associates, Inc.
- 3. Kapoor, V.C. 1991. Theory and Practice of Animal Taxonomy. Oxford and IBH Publishing Co., Pvt. Ltd. New Delhi.
- 4. Margulis,Lynn and M.J.Chapman(4th edn.). Kingdoms and Domains: An Illustrated Guide to the Phyla of Life on Earth.W.H.Freeman &Company,USA
- 5. Mayr, E .1969. Principles of Systematic Zoology. McGraw Hill Book Company, Inc., NY.
- 6. Narendran, T.C. 2008. An introduction to Taxonomy. Zoological survey of India.

No	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Define systematics and its significance	R, U	3
CO-2	Apply the tools and techniques in taxonomic identification	U, Ap	3,5
CO-3	Choose taxonomic publications for research purpose	R,U	6
CO-4	Compare different approaches in taxonomy and its recent advancements	R, U	3.5
CO-5	Compare taxonomic characters in various taxon	R, An	3

Course Outcomes

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Systematics and Conservation Biology

Credits: 3:1 (Lecture:Practical)

CO No.	СО	PO	PSO	Cognitive Level	Knowledge Category	Lecture (L)/ Tutorial (T)	Practical (P)
CO-1	Define systematics and its significance	1	3	U	F, C	L/T	
CO-2	Apply the tools and techniques in taxonomic identification	1,2 ,6	3,5	U, Ap	С,Ар	L/T	Р
CO-3	Choose taxonomic publications for research purpose	1,3	6	U	F, C	L/T	

CO-4	Compare different approaches in taxonomy and its recent advancements	1	3,5	U	F, C	L/T	Р
CO-5	Compare taxonomic characters in various taxon	1	3	An	F, C	L/T	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO 1	-	-	3	-	-	-	-	-
CO 2	-	-	2	-	3		-	-
CO 3	-	-	-	-	-	3	-	-
CO 4	-	-	3	-	2	-	-	-
CO 5	-	-	3	-	-	-	-	

Mapping of COs with PSOs and POs :

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	-	-	-	-	-	-
CO2	3	2	-	-	-	3	-
CO3	2	-	3	-	-	-	-
CO4	3		-	-	-	-	-
CO5	3		-	-	-	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/discussion/quiz/seminar/presentation
- Project Evaluation
- Internal Exam
- End semester exam

	Internal Exam	Assignment	Project report	End Semester Examinations
CO 1	1	1		1
CO 2	1	1		~
CO 3	1	1		✓
CO 4	1	1		✓
CO 5	1	1	1	 Image: A second s

Mapping of Cos to Assessment Rubrics

Discipline	Zoology							
Course Code	MIUK4DSCZOO203.1							
Course Title	COMPARATIVE A	NATOMY	OF VERTE	BRATES				
Type of Course	DSC							
Semester	IV							
Academic	200 - 299							
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours/Week			
	4	3 hours	-	2 hours	5			
Pre-requisites	Basics of vertebrate of	liversity						
	Basic knowledge on	the structure	and function	s of organ sys	tems			
Course	This course explores	s the anatom	nical evolution	on of vertebr	ates. It entails			
Summary	compiling and analys	sing compara	tive data of a	anatomical as	pects related to			
	organ systems like t	he integume	ntary, digest	ive, respirator	ry, circulatory,			
	excretory, reproducti	excretory, reproductive, endocrine, and nervous systems. The course will						
	cover anatomical ada	ptations of a	nimals to the	ir environmer	nt from both an			
	organ system and an	environment	al perspective	е.				

Module	Unit	Content	Hrs						
Ι		INTEGUMENTARY AND SKELETAL SYSTEM	10						
	1	Introduction: Evolutionary perspectives and general concepts of comparative anatomy, Anaplasy, Homoplasy.	1						
	2	 Integumentary system- Gross anatomy of integument of vertebrates- comparative study of <i>Scoliodon</i>, frog, and rabbit. Epidermal derivatives - scales, feathers, beaks, hair, hoof, horns, antlers, claws, teeth, nails, hooves, and baleen Epidermal glands -various types of glands of vertebrates and their functions (e.g. mucous, serous, ceruminous, poison, uropygial, sweat, sebaceous and mammary glands). 							
	3	Skeletal system- Comparative study of vertebrae and appendicular skeleton of <i>Scoliodon</i> , frog, and rabbit	5						
II		DIGESTIVE AND RESPIRATORY SYSTEM	10						
	4	Digestive system- Origin and development of alimentary canal. Dentition of <i>Scoliodon</i> , frog, rabbit	5						
	5	Respiratory system- Aquatic and terrestrial respiratory organs.	5						
III		CIRCULATORY SYSTEM AND URINOGENITAL SYSTEM	13						

	6	Circulatory system- Evolution of heart & aortic arches. Comparative study - <i>Scoliodon</i> , frog, and rabbit.	5
	7	Excretory System -Development of kidney. Evolution of kidneys in vertebrates.	4
	8	Reproductive systems- Development of gonads. Genital ducts in vertebrates.	4
IV		NERVOUS SYSTEM AND SENSE ORGANS	12
	9	Nervous system: Development and differentiations of various parts of brain.	6
	10	Sense organs- Comparative study of various sense organs in <i>Scoliodon</i> , frog, and rabbit.	6
V		PRACTICUM	30
	11	Comparative study of scales in fishes-Placoid, cycloid, ctenoid (Preparation of slides)	
	12	Comparative study of vertebrae (typical vertebra, atlas, axis, thoracic and lumbar vertebrae) of <i>Scoliodon</i> , frog and rabbit with the help of specimen / model / pictogram	
	13	Comparative study of pectoral and pelvic girdles of <i>Scoliodon</i> , frog and rabbit with the help of specimen / model / pictogram	
	14	Study of respiratory organ of fishes (Dissection)	
	15	Comparative study of urinogenital system of <i>Scoliodon</i> , frog and rabbit with the help of pictogram	
	16	Comparative anatomy of brain of <i>Scoliodon</i> , frog and rabbit with the help of pictogram	
	17	Comparative study of eyes of <i>Scoliodon</i> , frog and rabbit with the help of pictogram	
	18	Visit to Natural History Museum, Thiruvananthapuram	

Reference

- 1. Kardong, Kenneth V. 2008. Vertebrates Comparative Anatomy, Function, Evolution. McGraw Hill Higher Education.
- 2. Kent, George C. & Carr, Robert K. 2009. Comparative Anatomy of the Vertebrates. McGraw-Hill Science.
- 3. Liem, K. F., Bemis, W. E., Walker, W.F. & Grande, L. 2001. Functional Anatomy of the Vertebrates: An Evolutionary Perspective. Brooks Cole.
- 4. Walter, H.E. & L.P. Sayles, 1994. Biology of the vertebrates. The McMillan Co.
- 5. Gupta, R.C. & Girish Chopra, 1999. Comparative anatomy of chordates. Chand & Co.
- 6. Saxena, R.K. & Saxena, Sumitra. 2008. Comparative Anatomy of Vertebrates. Viva Books Private Limited.

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Explain the basic concepts in comparative vertebrate anatomy	R, U	1
CO-2	Compare anatomical characteristics across vertebrate species in an evolutionary context.	U, Ap	3
CO-3	Analyse the anatomical adaptations of animals to their environment	An, E	1,5
CO-4	Describe the development of various organ systems	R, U	3
CO-5	Prepare slides of different types of fish scales and compare their structure.	Ap, An	7
CO-6	Examine and compare the vertebrae and girdles in three different animals: <i>Scoliodon</i> (aquatic), frog (amphibian) and rabbit (terrestrial).	An, E	1

Course Outcomes

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Credits: 3:1 (Lecture: Practical)

CO No.	СО	POs	PSOs	Cognitive Level	Knowledge Category	Lecture (L)/ Tutorial (T)	
1	Explain the basic concepts in comparative vertebrate anatomy	1	1	R, U	С	L	
2	Compare anatomical characteristics across vertebrate species in an evolutionary context.	1,3	3	U, Ap	F	L	Р
3	Analyse the anatomical adaptations of animals to their environment	1,3	1,5	An, E	F	L	
4	Describe the development of various organ systems	1	3	R, U	F	L	Р
5	Prepare slides of different types of fish scales and compare their structure.	1	6	Ap, An	Р	L	Р
6	Examine and compare the vertebrae and girdles in three different animals: <i>Scoliodon</i> (aquatic),	1,3	1	An, E	Р	L	Р

	frog (amphibian) and			
	rabbit (terrestrial).			

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO 1	1	-	-	-	-	-	-	-
CO 2	-	-	3	-	-	-	-	-
CO 3	1	-	-	-	1	-	-	-
CO 4	-	-	-	1	-	-	-	-
CO 5	-	-	-	-	-	1	-	-
CO 6	1	-	-	-	-	-	-	-

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	-	-	-	-	-	-
CO2	3	-	3	-	-	-	-
CO3	3	-	3	-	-	-	-
CO4	3	-	-	-	-	-	-
CO5	3	-	-	-	-	-	-
CO-6	3	-	3	-	-	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/discussion/quiz/seminar/presentation
- Project Evaluation
- Internal Exam
- End semester exam

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark	\checkmark	\checkmark	\checkmark
CO 3	\checkmark	\checkmark	\checkmark	\checkmark
CO 4	\checkmark			\checkmark
CO 5	\checkmark			
CO 6	\checkmark			\checkmark

Mapping of COs to Assessment Rubrics :

Discipline	ZOOLOGY							
Course Code	MIUK4DSEZOO201.1							
Course Title	TOXICOLOGY AN	ID DISASTI	ER MANAG	EMENT				
Type of Course	DSE							
Semester	IV							
Academic	200 - 299							
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours/Week			
	4	3 hours	-	2 hours	5			
Pre-requisites	Basic idea on differen	nt types of di	sasters and to	oxic agents				
Course	This course introduce	es the princip	oles and conc	epts of toxico	ology, focusing			
Summary	on the adverse effect	cts of chemi	cal, physica	l, and biolog	ical agents on			
	0 0	living organisms. Moreover, it also provides an overview of disaster						
	management principl	es, strategies	, and practic	es for mitigat	ting the impact			
	of natural and man-m	ade disasters						

Module	Unit	Content	Hrs					
Ι		INTRODUCTION TO TOXICOLOGY	10					
	1	General Principles of Toxicology: Definition, scope of toxicology,	2					
		disciplines of toxicology.						
	2	Classification of toxic agents, natural toxins, animal toxins, plant toxins,	4					
		food toxins, genetic poisons and chemical toxins.						
	3	Factors affecting toxicity – species and strain, age, sex, nutritional status,	4					
		hormones, environmental factors, circadian rhythms						
II		XENOBIOTIC TRANSLOCATION AND TOXICITY TESTS						
	4	Absorption, distribution, excretion, biotransformation, bioactivation.						
	5	Toxicity tests-types and testing procedures- experimental design - selection						
		of species.						
	6	Dose-effect and dose-response relationship- acute toxicity, chronic toxicity	2					
		reversible & irreversible effects.						
	7	Antidotes-Classification based on the mechanism of action, antidotal	3					
		procedures						
III		BASIC CONCEPTS OF DISASTER MANAGEMENT	15					
	8	Understanding of key concepts in disasters management: hazards, disasters,	5					
		vulnerability, resilience, disaster management, disaster cycle, risk,						
		prevention, mitigation, relief and response, recovery and rehabilitation						
	9	Types of disasters: Natural disasters-earthquakes, floods drought, landside,	5					
		land subsidence, cyclones, volcanoes, tsunami, avalanches, global climate						
		extremes, pandemics.						

		Man-made disasters-Terrorism, gas and radiations leaks, toxic waste disposal, oil spills, fire.					
	10	Disaster phenomenon and events (global, national and regional).	5				
IV		DISASTER MANAGEMENT MECHANISM	8				
	11	Basic principles of disasters management, disaster management cycle	4				
	12	Disaster management policy, national and state bodies for disaster management	4				
V		PRACTICUM					
	13	Toxicant Bioassay – LC 50 determination in Brine shrimp using probit analysis					
	14	Study of mechanism of action of toxins using suitable databases like Toxin and Toxin Target Database (T3DB)					
	15	Analysis of dose-response using suitable software					
	16	A comprehensive literature review examining the mechanism of action of antidotes targeting specific toxins.					
	17	Case Study: COVID-19 impact and its management strategies in the Indian scenario					
	18	Mock drill for earthquake and fire					
	19	First Aid training programmes					
	20	Case study: analysis of a recent natural disaster event					

Reference

- 1. Butler, G.C. 198\78, Principles of Ecotoxicology. John Wiley and Sons, Chichester.
- Casarett and Doulls's 1980. Toxicology: The Basic Science of Poisons.. II (Eds.) Macmillan publishing co., Inc, New York.
- Foster L. Mayer, Donald J. Versteeg, Michael, J. McKee and Barnett A. Ratlner, 1992, Biomarkers, physiological and non-specific biomarkers. Lewis publishers, London.
- Frant C.L.V. 1991, Basic Toxicology II (Eds.), Hemisphere publishing corporation, Washington, London
- 5. Fumi Matsumura, 1980. Toxicology of Insecticides. Plenum Press, New York and London.
- Sambasiva Rao K.R.S. 1999. Pesticide impact on fish metabolism. (Eds.) Discovery Publishing House, New Delhi.
- Thomas J. Haley and William O. Berndt, 1987. Handbook of toxicology. Hemisphere Publishing Corporation, Washington.
- 8. Bryant Edwards (2005): Natural Hazards, Cambridge University Press, U.K.

- 9. Carter, Nick 1991. Disaster Management: A Disaster Manager's Handbook. Asian Development Bank, Manila Philippines.
- 10. Carter, W. Nick, 1991: Disaster Management, Asian Development Bank,
- 11. Coppola P Damon, 2007. Introduction to International Disaster Management, Butterworth-Heinemann.

Course Outcomes

No.	Upon completion of the course the graduate will be	Cognitive	PSO
	able to	Level	addressed
CO-1	Explain the fundamental principles of toxicology,	R, U	4,5
	including the dose-response relationship, toxicity		
	mechanisms, and factors influencing toxicity.		
CO-2	Assess the health effects of acute and chronic	Ap,E	5
	exposure to toxic substances.		
CO-3	Critically analyze case studies and real-life examples	An,Ap	6,8
	of disaster events to extract lessons learned and		
	implement best practices in disaster management.		
CO-4	Design and implement disaster recovery and	Ар	7,8
	rehabilitation plans to facilitate the restoration of	_	
	affected communities and infrastructure.		
CO-5	Choose and apply antidotes against specific toxins	Ар	7

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Toxicology and Disaster Management

Credits: 3:1 (Lecture: Practical)

CO No.	СО	POs	PSOs	Cognitive Level	Knowledge Category	Lecture (L)	Practical (P)
1	Explain the fundamental principles of toxicology, including the dose- response relationship, toxicity mechanisms, and factors influencing toxicity.	1	4,5	R, U	С	L	Р
2	Assess the health effects of acute and chronic exposure to toxic substances.	1	5	Ap,E	F	L	Р
3	Critically analyze case studies and real-life examples of disaster events to extract lessons learned and implement best practices in disaster	1,3	6,8	An,Ap	М	L	Р

	management.						
4	Design and implement disaster recovery and rehabilitation plans to facilitate the restoration of affected communities and infrastructure.	1,4	7,8	Ар	М	L	Р
5	Choose and apply antidotes against specific toxins	1,2	7	Ар	Р	L	Р

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO 1	-	-	-	1	2	-	-	-
CO 2	-	-	-	-	2	-	-	-
CO 3	-	-	-	-	-	3	-	3
CO 4	-	-	-	-	-	-	3	3
CO 5	-	-	-	-	-	-	2	-

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	-	-	-	-	-	-
CO2	3	-	-	-	-	-	-
CO3	3	-	3	-	-	-	-
CO4	3			2	-	-	-
CO5	3	3		-	-	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/discussion/quiz/seminar/presentation
- Project Evaluation
- Internal Exam
- End semester exam

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark		\checkmark	\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark	\checkmark	\checkmark	
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		

Mapping of COs to Assessment Rubrics :

Discipline	ZOOLOGY							
Course Code	MIUK4SECZOO200).1						
Course Title	BASIC INSTRUME	ENTATION '	TECHNIQU	JES IN LIFE	SCIENCE			
Type of Course	SEC							
Semester	IV							
Academic	200 - 299							
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours/Week			
	3	2 hours	-	2 hours	4			
Pre-requisites	Basic knowledge of f	fundamental	concepts in b	iology, chemi	stry, physics.			
	Experience with basi	c laboratory	techniques ar	nd laboratory	protocols.			
Course	This course provide	s an introdu	ction to the	principles, to	echniques, and			
Summary	applications of instru	imentation in	n biological 1	research. Stud	lents will learn			
	about various instru	ments used	to study bi	ological syste	ems, including			
	microscopy, spectros	microscopy, spectroscopy, chromatography, and electrophoresis. Emphasis						
	will be placed on	understandi	ng the und	erlying princ	iples of each			
	technique, practical	applications,	data analysi	s, and interpr	retation in real			
	world situations.							

Module	Unit	Content	Hrs					
Ι		MICROSCOPY AND MICROTECHNIQUES	12					
	1 History and importance of microscopy in biology-principles of microscopy- Handling and care of microscope. 2 Simple microscope. Compound microscope: Magnifying system, Illumination system, Image formation, Oil-immersion microscopy, Bright field, Dark field and phase contrast microscopy, Inverted microscope.							
	3 Stereoscopic dissecting microscope (SDM). Image capture and analysis Electron microscope- SEM, TEM and Environmental scanning electron microscope (ESEM), Fluorescence microscope, Laser scan, Confoca microscope.							
	4	Microtome: Introduction, principle and working. Techniques for preparation of temporary and permanent slides. Histochemical techniques for detection of proteins, lipids and carbohydrates.	4					
II		CHROMATOGRAPHY	5					
	5	Electrochemical techniques -General principles. Buffers. Measurement of	1					

		conductivity of solutions. Electrodes. pH meter.					
	6	Principle of chromatographic separation. Retention time. Chromatogram. Types of chromatography- (Brief account only) Thin layer chromatography, HPTLC, Column chromatography and ion exchange chromatography, Gas chromatography, High performance liquid chromatography (HPLC). Mention its basic principle and their applications.	4				
III		CENTRIFUGATION AND SPECTROSCOPY	7				
	7 Introduction. Principle of centrifugation. Basic components and types of centrifuges- Differential and density gradient centrifugation.						
	8	Basic principles in spectroscopy- Colorimeter, Spectrophotometer principle, working and applications.	2				
	9	Types-IR spectroscopy, Fluorescent spectroscopy, Atomic absorption spectroscopy, Nuclear Magnetic-resonance spectroscopy, Mass spectroscopy. (Brief account only) Mention its basic principle and their applications.	4				
IV		ELECTROPHORESIS	6				
	10	Introduction, Principle and techniques in electrophoretic separation of biomolecules.	1				
	11	Types of electrophoresis- Native PAGE and SDS-PAGE, Agarose gel Electrophoresis, Immunoelectrophoresis. Isoelectric focusing. Radioimmunoassay, Fluorescent immunoassay, ELISA	3				
	12	PCR, RT-PCR, DNA Sequencer and blotting techniques (brief account only) - Principle and applications.	2				
V		PRACTICUM	30				
	13	Hands-on experience with microscopic techniques.					
	14	Sketching of biological specimens using a camera lucida.					
	15	Preparation of temporary and permanent slides.					
	16	Histochemical techniques for detection of proteins, lipids and carbohydrates.					
	17	Dissection of radula under microscope.					
	18	Measurement of pH using electrodes.					
	19	Paper chromatographic separation of amino acids.					
	20 21	Centrifugation of biological samples. Quantification and estimation of Na, K, Ca of the given sample with the					
	<i>L</i> 1	help of flame photometer/ spectrophotometer.					
	22	Demonstration of Gel mounting and electrophoresis of DNA sample.					
	23	Demonstration of PCR and blotting techniques.					
	24	Case Studies: Analysis of real-life applications of instrumentation in biology.					
	25	Visit to Central Laboratory for Instrumentation and Facilitation, University of Kerala, will be conducted as part of the course.					

REFERENCES:

- 1. Ghatak K.L. 2011. Techniques and Methods in Biology. PHI Learning Pvt. Ltd. New Delhi
- 2. Gupta A. 2009. Instrumentation and Bio-Analytical Techniques. PragatiPrakashan, Meerut.
- 3. Hoope, W. et.al. 1983. Biophysics. Springer Verlag, Berlin.
- 4. Lehninger, A.L.1971. Bioenergetics. W.A. Benjamin, London
- 5. Narayanan, P. 2000. Essentials of Biophysics. New Age International (P) Ltd. Publishers, New Delhi

No.	Upon completion of the course the graduate will be	Cognitive	PSO
	able to	Level	addressed
CO-1	Describe the principles behind various instrumentation techniques used in biology.	R,U	3
CO-2	Explain the significance and applications of instruments used in biology.	R,U	3
CO-3	Experience with laboratory protocols and basic laboratory techniques such as pipetting, dilutions, and safety practices.	Ap, An	3,4
CO-4	Attain practical experience and skill development in using different instruments for life science research.	An, Ap, E	4,5
CO-5	Analyse and apply the applications of instrumentation in biological research and its significance in advancing scientific knowledge.	An, Ap, E, C	5,6,7
CO-6	Analyse and present case studies in real-life applications of instrumentation in biology.	An, Ap, E, C	6,7
CO-7	Integrate the knowledge acquired through the course to predict current trends and challenges in the field of research.	An, Ap, E, C	7,8

Course Outcomes

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: BASIC INSTRUMENTATION TECHNIQUES IN LIFE SCIENCE

Credits: 2:1 (Lecture:Practical)

CO No.	СО	PSO	PO	Cognitive Level	Knowledge Category	Lecture (L)/ Tutorial (T)	Practical (P)
CO-1	Describe the principles behind various instrumentation techniques used in biology.	3	1	R,U	F, C	L	
CO-2	Explain the significance and applications of instruments used in biology.	3	1	R,U	F,C	L	
CO-3	Experience with laboratory protocols and basic laboratory techniques such as pipetting, dilutions, and	3,4	1,2 ,5	Ap, An	F,C		Р

	safety practices.					
CO-4	Attain practical experience and skill development in using different instruments for life science research.	4,5	1,2 ,5, 6	An, Ap, E	F,C,P	Р
CO-5	Analyse and apply the applications of instrumentation in biological research and its significance in advancing scientific knowledge.	5,6,7	1,2 ,3, 5,6	An, Ap, E, C	F,C,P,M	Р
CO-6	Analyse and present case studies in real-life applications of instrumentation in biology.	6,7	1,2 ,3, 5,6	An, Ap, E, C	F,C,P,M	Р
CO-7	Integrate the knowledge acquired through the course to predict current trends and challenges in the field of research.	7,8	1,2 ,3, 5,6	An, Ap, E, C	F,C,P,M	Р

Mapping of COs with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO 1	-	-	3	-	-	-	-	-
CO 2	-	-	3	-	-	-	-	-
CO 3	-	-	3	3	-	-	-	-
CO 4	-	-	-	3	3	-	-	-
CO 5	-	-	-	-	3	3	3	-
CO 6	-	-	-	-	-	3	3	-
CO 7	-	-	-	-	-	-	3	3

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	-	-	-	-	-	-
CO2	3	-	-	-	-	-	-
CO3	3	3	-	-	3	-	-
CO4	3	3	-	-	3	3	-
CO5	3	3	3	-	3	3	-
CO6	3	3	3	-	3	3	-
CO7	3	3	3	-	3	3	-

Correlation Levels:

Level	Correlation			
-	Nil			
1	Slightly / Low			

2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/discussion/quiz/seminar/presentation
- Project Evaluation
- Internal Exam
- End semester exam

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		
CO 5	\checkmark	\checkmark		
CO 6	\checkmark	\checkmark		
CO7	\checkmark	\checkmark		

$\boldsymbol{SEMESTER-V}$

Discipline	ZOOLOGY						
Course Code	MIUK5DSCZOO300).1					
Course Title	CELL BIOLOGY						
Type of Course	DSC						
Semester	V						
Academic	300 - 399						
Level							
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours/Week		
	4	3 hours	-	2 hours	5		
Pre-requisites	Basic knowledge in p	•	•				
	Have basic knowledg	ge in cell stru	cture and its	components.			
Course	The Cell Biology co	ourse offers	students an	in-depth exp	loration of the		
Summary	structure, function,	structure, function, and physiological processes of cells. Through					
	comprehensive lectures, laboratory sessions, and interactive discussions,						
	students will gain a t	horough und	lerstanding of	f the fundame	ental principles		
	of cell biology, ind	cluding cell	structure, o	organelle fun	ction, cellular		
	processes, and their r	elevance to h	uman health	and disease.			

Module	Unit	Content	Hrs					
Ι		CELL STRUCTURE AND FUNCTION	15					
	1	History, development and scope of cell biology- Overview of cell	2					
		biology, historical perspective, discovery of cells, cell theory and its						
		modern version, characteristics of living cells, cell and its components:						
		basic types of cells- prokaryotic and eukaryotic, nature and comparison.						
	2	Overview of eukaryotic cell structure and function- Cell membrane						
		tructure and function: Plasma membrane- ultra structure- lipid bilayer						
		structure and function, fluid mosaic model, functions of plasma						
		membrane. Membrane proteins: structure, function, and classification.						
	3	Organelle Biology- Mention the morphology, structure and function-	10					
		Mitochondria, Endoplasmic reticulum, Golgi apparatus, Lysosomes and						
		peroxisomes, Ribosomes, Proteasomes, Cytoskeleton, Centrioles and basal						
		bodies, Interphase nucleus, Nucleolus, Chromatin, Chromosome.						
II		CELL CYCLE AND CELL DIVISION	13					
	4	Overview of the cell cycle phases : G1, S, G2, and M phases, mention G0,	3					
		and D0 stages and their significances, amitosis. Cell cycle checkpoints and						
		their role in disease.						
	5	Mitosis: Phases of mitosis (prophase, metaphase, anaphase, and	4					

		telophase), spindle formation, and chromosome segregation.	
		Cytokinesis: contractile ring formation, cleavage furrow formation, and	
		completion of cell division.	
	6	Meiosis: Meiosis and comparison with mitosis, stages of meiosis I and II,	3
		and genetic implications. Gametogenesis, genetic recombination, and	
		chromosome segregation.	
	7	Dysregulation of the Cell Cycle-: characteristics of cancer cells,	3
		dedifferentiation of cancer cells, theories of cancer, carcinogenesis,	
		oncogenes and tumor suppressor genes (brief account only).	
III		CELL SIGNALLING	7
	8	Introduction to cell signalling pathways- types of signalling molecules	4
		and receptors, ligands, intracellular signalling cascades and intracellular	
		second messengers.	
	9	Cell communication- signal transduction, basic elements involved.	3
IV		CELL DEATH AND SENESCENCE	10
1,	10	Cellular senescence : definition, triggers, and consequences. Mechanisms	3
		of cell death and cellular senescence.	
	11	Aging: cellular and other changes, causes of aging, mention free radicals	4
		and superoxide dismutase (SOD), theories of aging.	
	12	Environmental factors influencing aging: lifestyle factors (diet,	3
		exercise), environmental stressors, and socioeconomic factors.	
V		PRACTICUM	30
	13	Hands on training in handling light microscopes to observe cell structure,	
		morphology.	
	14	Staining of prokaryotic cells: (a) Lactobacillus (b) Rhizobium	
	15	Staining of eukaryotic cells: buccal epithelial cells	
	16	Observation and study of cell organelles using permanent mount slides	
		and simulations.	
	17	Isolation and observation of mitochondria.	
	18	Observation of Giant chromosomes in Diptera: (Drosophila Chironomus	
		larvae) salivary gland cells.	
	19	Slide preparation and observation of cell cycle stages in microscopy	
		slides. –a) Mitosis: stages in onion (Allium cepa) root meristem (squash	
		preparation, b) Meiosis: stages in testis of grass hopper.	
1	L	1	

20	Demonstration of cell culture techniques.	
21	Case study of practical work highlighting the impact of aging on health and disease management.	
22	Prepare an assignment in strategies for promoting healthy aging: dietary interventions, exercise, caloric restriction, and lifestyle modifications.	
23	Visit to a lab or research institute to familiarise the techniques in cell biology.	

REFERENCES

- 1. Beker, W. M. et. al. (2004) The World of Cell. Pearson Edn., Singapore
- 2. Alberts, B. et al. Molecular Biology of the Cell. Garland Pubg. Inc., New York
- 3. Darnell, J. et al. Molecular Cell Biology. Scientific American Book
- 4. Karp G. (2005). Cell and Molecular Biology. 4 e, John Wiley & Sons, Inc.
- 5. Sheeler, P. and Bianchi D. E. Cell Biology –Structure, Biochemistry and Functions.
- 6. Verma, P. S. & Agarwal, V. K. Cytology. S. Chand & Co.
- 7. De Roberties, E. D. P. et al. Cell and Molecular Biology TMH
- 8. Bhaskaran, K. K. & Biju Kumar, A. Cell Biology, Genetics & Molecular Biology. Manjusha
- Kleinsmith, L. J. & Kish, V. M. (1995). Principles of Cell and Molecular Biology. 2e, Harper Collins College Pubs
- 10. Sadava, D. E. Cell Biology. Jones & Bartlett Publishers, London

Course Outcomes

No.	Upon completion of the course the graduate will be	Cognitive	PSO
	able to	Level	addressed
CO-1	Describe the principles and concepts of cell biology.	R,U	3
CO-2	Explain the detailed structures and functions of cell	R, U,Ap	3,5
	organelles		
CO-3	Explain the cell cycle and stages of cell division;	R,U,Ap	3,5
	distinguish between mitosis and meiosis.		
CO-4	Explain the mechanisms of cell death and aging.	R, U, Ap	3,5
CO-5	Perform experiments in cell biology to distinguish a	An, Ap, E	3,5,7
	prokaryotic cell from eukaryotic cell, mitosis from		
	meiosis and know useful techniques required for		
	further education.		
CO-6	Analyse and present case studies and real-world	An, E, Ap,	3,5,6
	examples of highlighting the impact of aging on	C	
	health and disease management.		
CO-7	Integrate the knowledge acquired through the course	An, E,	3,7,8
	to predict future directions in cell biology research	Ap,C	

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: CELL BIOLOGY

Credits: 3:1 (Lecture:Practical)

CO No.	СО	PSO	РО	Cognitive Level	Knowledge Category	Lecture (L)/ Tutorial (T)	Practical (P)
CO-1	Describe the principles and concepts of cell biology.	3	1	R,U	F, C	L	
CO-2	Explain the detailed structures and functions of cell organelles	3,5	1	R, U,Ap	F,C	L	
CO-3	Explain the cell cycle and stages of cell division; distinguish between mitosis and meiosis.	3,5	1	R,U,Ap	F,C	L	
CO-4	Explain the mechanisms of cell death and aging.	3,5	1	R, U, Ap	F,C	L	
CO-5	Perform experiments in cell biology to distinguish a prokaryotic cell from eukaryotic cell, mitosis from meiosis and know useful techniques required for further education.	3,5,7	1,2,6	An, Ap, E	F,C,P		Р
CO-6	Analyse and present case studies and real- world examples of highlighting the impact of aging on health and disease management.	3,5,6	1,2,3 ,6	An, E, Ap, C	F,C,M		Р
CO-7	Integrate the knowledge acquired through the course to	3,7,8	2,3.6	An, E, Ap,C	F,C,P,M		Р

predict future			
directions in cell			
biology research			

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO 1	-	-	3	-	-	-	-	-
CO 2	-	-	3	-	2	-	-	-
CO 3	-	-	3	-	2	-	-	-
CO 4	-	-	3	-	2	-	-	-
CO 5	-	-	3	-	3	-	2	-
CO 6	-	-	3	-	3	3	-	-
CO-7	-	-	3	-	-	-	3	3

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	-	-	-	-	-	-
CO2	3	-	-	-	-	-	-
CO3	3	-	-	-	-	-	-
CO4	3	-	-	-	-	-	-
CO5	3	3	-	-	-	3	-
CO6	3	3	3	-	-	3	-
CO7	-	3	3	-		3	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/discussion/quiz/seminar/presentation
- Project Evaluation
- Internal Exam
- End semester exam

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		
CO 6	\checkmark	\checkmark		
CO7	\checkmark	\checkmark		

Discipline	ZOOLOGY							
Course Code	MIUK5DSCZOO301.1							
Course Title	GENETICS							
Type of Course	DSC							
Semester	V							
Academic	300 - 399							
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours/Week			
	4	3 hours	-	2 hours	5			
Pre-requisites	Basic Biology: studer	nts should ha	ve a foundati	ional understa	nding of			
	biological concepts s	uch as cell st	ructure and f	unction, genes	s, DNA and			
	RNA, structure of ch	romosomes.						
	A basic knowledge in	n cell division	n and Mendel	lian genetics.				
Course	Genetics course is a	designed to	provide stud	ents with a	comprehensive			
Summary	understanding of the	principles ar	nd application	ns of genetics	. The course is			
	divided into four n	nodules cove	ering fundar	mental conce	pts, molecular			
	genetics, human gene		0	11 0				
	sessions offer hands	-	•	•	-			
	involve case studies.			l real-world	applications of			
	genetic principles in l	health and dia	seases.					

Module	Unit	Content	Hrs						
Ι		FUNDAMENTALS OF GENETICS	22						
	1	Introduction to Genetics- Historical overview, basic concepts and	4						
		rminology in genetics.							
		Mendelian Genetics- Mendel and his experiments, relevance of Mendel's							
		principles in modern genetics.							
	2	Extensions to Mendelian Genetics-Allelic, Incomplete dominance, lethal and co-dominance, Non-allelic, complementary gene action, Co-epistasis, dominant and recessive (coat colour), multiple alleles, pleiotropism and polygenic inheritance.6Cytoplasmic inheritance: paramecium, maternal effects in Drosophila.6							
	3	Chromosomal Basis of Inheritance- Linkage, crossing over and	6						
		recombination: Linked genes, linkage groups, chromosome theory of							
		linkage, factors affecting linkage, crossing over and recombination,							
		mechanism, kinds and factors affecting crossing over and its							
		significance. Chromosome mapping (brief account only).							
		Sex Linkage: Characteristics of sex linked inheritance, sex linked							

	20		
	19	Construction of Pedigree charts and provide students with pedigrees showing the inheritance of a particular genetic trait or disorder within a family. Discussions on case studies illustrating real-world applications of forensic	
	18	Study of genetic syndromes and abnormal karyotypes of man using idiograms (Klinefelter's syndrome, Turner's syndrome, Down syndrome and Edward syndrome).	
	17	Study of normal chromosome compliment and karyotype of man using idiograms.	
	16	Study of Barr body and its significance using stained buccal epithelial cells.	
	15	Observation of phenotypic variations in fruit flies (Drosophila) with different mutations.	
	14	Study of monohybrid cross using coloured beads.	
V	1.4	PRACTICUM	30
X 7	13	Ethical and Societal Issues in Genetics	2
		and bioremediation.	
	12	genetically modified organisms (GMOs) Industrial and environmental applications of Genetics-biopharmaceuticals	2
	10	Agricultural Genetics- Crop improvement, animal breeding and	2
	9	Forensic genetics-concept of DNA profiling and DNA fingerprinting.	2
IV	9	APPLIED GENETICS AND ETHICAL CONSIDERATIONS Medical Genetics- Genetic testing, gene therapy and genetic counselling.	8 2
117		Disorders-Phenylketonuria, Alkaptonuria, Tyrosinosis and Albinism.	0
		pathway of phenyl alanine, tyrosine metabolism in normal man.	
	8	Biochemical genetics: Human biochemical genetics, biochemical	4
		(eg. Klinefelters syndrome, Turner's syndrome), pedigree analysis.	
	7	Karyotyping, normal chromosome compliment, chromosomal anomalies in man, autosomal (eg. Down syndrome, Edwards syndrome), allosomal	4
III		HUMAN GENETICS	8
		ionizing.	
	6	Gene mutation, molecular basis of mutation - chemical, ionizing and non-	2
		chromosomal rearrangements, somatic, germinal, spontaneous, induced, autosomal, allosomal, euploidy and aneuploidy.	
	5	Mutation: Types of mutations - point mutations, insertions, deletions,	5
II		MOLECULAR GENETICS	7
		mechanism of sex determination (XXXY, XX-XO, ZZ-ZW), sex determination in man, role of Y chromosome, Barr bodies, dosage compensation and Lyon hypothesis, Chromosome mosaicism, inter sex, gynandromorph and hermaphrodite.	
	4	Sex Determination-Environmental factors on sex determination, genic balance theory, chromosome theory of sex determination, chromosomal	6
		linked genes, holandric genes, sex limited genes and sex influenced genes.	
		inheritance of man (colour blindness and haemophilia), incomplete sex	

	genetics, such as criminal investigations, missing person's cases, or disaster victim identification.					
21	cilitate debate\discussions on the ethical considerations surrounding the e of DNA evidence in criminal investigations.					
22	Visit to a research lab/Institute to familiarise the methods in applied genetics.					

REFERENCES

- 1. Benjamin Lewin. (2004). Genes VIII. Oxford University press, N.Y.
- 2. Daniel J Fairbanks and W. Ralph Brooks. (1999) Genetics principles and analysis. Jones and Bartlett Publishers, Massachusetts.
- 3. Peter Snustad, D. and Michael, J. (2000). Principles of Genetics. John Wiley and Sons, Inc., New York
- 4. Robert J. Brooker. (1999) Genetics-analysis and principles. Addison-Wesley, Menlo Park, California
- 5. Snustad and Simon (2003) Principles of genetics. 3e. John Wiley and Sons, New York.
- 6. Strachan, I. and Read. (1999) Human molecular genetics. John Wiley and Sons, Newyork.

No.	Upon completion of the course the graduate will be	Cognitive	PSO
	able to	Level	addressed
CO-1	Describe the principles and concepts of genetics.	R,U	3
CO-2	Identify and explain the questions from Mendelian genetics.	R, U	3
CO-3	Explain the inheritance of chromosomal basis of inheritance, linkage, crossing over and recombination.	R,U,E	3
CO-4	Explain the principles of sex determination and establish the rules in sex determination.	R,U,Ap	3,5
CO-5	Explain the mechanisms of mutations, karyotyping and their effects in human health and diseases.	R,U,E	3,5
CO-6	Evaluate the karyotyping process in normal chromosomal compliment and chromosomal anomalies in man and analyse pedigree charts and genetic issues stemming from family trees.	An, Ap, E	3,5
CO-7	Analyse and present case studies illustrating real- world applications of forensic genetics, such as criminal investigations, missing person's cases, or disaster victim identification.	An, E, Ap, C	3,6,7
CO-8	Integrate the knowledge acquired through the course to predict future directions in research in applied genetics.	An, R, Ap, C	7,8

Course Outcomes

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: GENETICS

Credits: 3:1 (Lecture: Practical)

CO	СО	PSOs	POs	Cogn	Knowledge	Lecture(L)/	Practical
No.				itive	Category	Tutorial (T)	(P)

				Level			
CO-1	Describe the principles and concepts of genetics.	3	1	R,U	F,C	L	
CO-2	Identify and explain the sources and pathways of Mendelian genetics	3	1	R, U	F,C	L	
CO-3	Explain the inheritance of chromosomal basis of inheritance, linkage, crossing over and recombination.	3	1	R,U,E	F,C	L	
CO-4	Explain the principles of sex determination and establish the rules in sex determination.	3	1	R,U, Ap	F,C	L	
CO-5	Explain the mechanisms of mutations and their effects in human health.	3,5	1	R,U,E	F,C	L	
CO-6	Evaluate the karyotyping process in normal chromosomal compliment and chromosomal anomalies in man.	3,5	1,2	An, Ap,E	F,C,P		Р
CO-7	Analyse and present case studies illustrating real-world applications of forensic genetics, such as criminal investigations, missing person's cases, or disaster victim identification.	3,6,7	1,2,6	An, E, Ap, C	F,C,P		Р

CO-8	Integrate the	7,8	1,2,6	An,	F,C,P,M	Р
	knowledge			R,		
	acquired through			Ap, C		
	the course					
	to predict future					
	directions in					
	research in					
	applied genetics.					

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO 1	-	-	3	-	-	-	-	-
CO 2	-	-	3	-	-	-	-	-
CO 3	-	-	3	-	-	-	-	-
CO 4	-	-	3	-	2	-	-	-
CO 5	-	-	3	-	2	-	-	-
CO 6	-	-	3	-	2	-	-	-
CO 7	-	-	3	-	-	2	3	-
CO 8	-	-	-	-	-	-	2	3

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
C01	3	-	-	-	-	-	-
CO2	3	-	-	-	-	-	-
CO3	3	-	-	-	-	-	-
CO4	3	-	-	-	-	-	-
CO5	3	-	-	-		-	-
CO6	3	3	-	-		-	-
CO7	3	3	-	-	-	3	-
CO8	3	3		-	-	3	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/discussion/quiz/seminar/presentation
- Project Evaluation
- Internal Exam
- End semester exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project	End Semester
			evaluation	Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark
CO 6	\checkmark	\checkmark		
CO 7	\checkmark	\checkmark		
CO 8	\checkmark	\checkmark		

Discipline	ZOOLOGY							
Course Code	MIUK5DSCZOO302.1							
Course Title	MOLECULAR BI	MOLECULAR BIOLOGY						
Type of	DSC							
Course								
Semester	V							
Academic	300 - 399							
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours/Week			
	4	3 hours	-	2 hours	5			
Pre-requisites	A basic knowledge	in general bi	ology and me	olecules in bio	ological			
	science.							
	Have basic knowled	lge in cell bio	ology, structu	are and functi	on of cell			
	organelles, DNA an	d RNA, gene	es and chrom	osomes.				
Course	Molecular biology c	ourse offers	students a co	omprehensive	exploration of			
Summary	the principles, tech	niques, and	applications	of molecular	biology. This			
	course provides an	-	+					
	underlying cellular	± ·	•					
	gene expression, re	•			0.			
	techniques in resear		0.		-			
	hands-on experienc			υ.	-			
	data analysis. By th				1 1 1			
	practical skills and t		-	•				
	careers in molecular	biology, bio	otechnology,	genetics, and	related fields.			

Module	Unit	Content	Hrs						
Ι		INTRODUCTION TO MOLECULAR BIOLOGY	10						
	1	1 Introduction : Overview of molecular biology, Historical perspective and							
	milestones, Development and scope of molecular biology.								
	2	Nature of genetic material: Experiments in search for the genetic	5						
		material, Griffith's experiment, transformation, contributions of Avery,							
		Mac Leod and Mc Carty, Conrat & Stern's experiment with TMV,							
		Hershey & Chase's experiment, and transduction.							
	3	Composition and structure of nucleic acids - Watson - Crick model of	4						
		DNA, clover leaf model of tRNA, different types of DNA and RNA.							
II		DNA REPLICATION AND REPAIR	14						

	4	DNA replication in prokaryotes and eukaryotes - Semi-conservative	6
		method, Messelson & Stahl experiment, replication machinery.	
		Mechanism of DNA replication- semi-conservative model, DNA	
		polymerases, replication fork, Enzymes and proteins involved in DNA	
		replication: helicase, DNA ligase, topoisomerases. Regulation of DNA	
		replication.	
	5	DNA damage and its consequences-Types of DNA Damage-Oxidative	4
		Damage, Alkylation of Bases, Base Loss, DNA Crosslinking, DNA	
		Strand Breaks, Cellular Stress and DNA Damage Response.	
	6	DNA repair mechanisms -Mismatch Repair, Base Excision Repair,	4
		Nucleotide Excision Repair, and Repair of Double-Stranded DNA Breaks.	
III		GENE EXPRESSION	14
	7	Gene Expression: contributions of Garrod, one gene – one enzyme	4
		hypothesis, one gene one polypeptide hypothesis, central dogma of	
		Molecular Biology, central dogma reverse, colinearity of genes and gene	
		products. Genetic code - deciphering / cracking the GC, characteristics of	
		GC, codon assignment and wobble hypothesis. Mention contributions of	
		Nirenberg and his associates, Khorana and his associates.	
	8	Transcription of RNAs - RNA polymerases, transcription factors,	5
		mechanism of transcription, post-transcriptional modifications of mRNA,	
		rRNA and tRNA, reverse transcription.	
	0		~
	9	Translation – machinery and mechanism; post translational modification	5
	9	of proteins; role of chaperones in protein normal folding and protection.	Э
IV	9		5 7
IV	10	of proteins; role of chaperones in protein normal folding and protection.	
IV		of proteins; role of chaperones in protein normal folding and protection. REGULATION OF GENE EXPRESSION	7
IV		of proteins; role of chaperones in protein normal folding and protection. REGULATION OF GENE EXPRESSION Overview of Regulation of Gene Expression, Prokaryotic versus	7
IV	10	of proteins; role of chaperones in protein normal folding and protection. REGULATION OF GENE EXPRESSION Overview of Regulation of Gene Expression, Prokaryotic versus Eukaryotic Gene Expression	7 1
IV	10	of proteins; role of chaperones in protein normal folding and protection. REGULATION OF GENE EXPRESSION Overview of Regulation of Gene Expression, Prokaryotic versus Eukaryotic Gene Expression Prokaryotic gene regulation - inducible and repressive systems; operon	7 1
IV	10	of proteins; role of chaperones in protein normal folding and protection. REGULATION OF GENE EXPRESSION Overview of Regulation of Gene Expression, Prokaryotic versus Eukaryotic Gene Expression Prokaryotic gene regulation - inducible and repressive systems; operon concept – Lac operon and Trp operon Eukaryotic gene regulation -Epigenetic Control of Gene Expression, Transcriptional Control of Gene Expression, Post-transcriptional Control	7 1 3
IV	10	of proteins; role of chaperones in protein normal folding and protection. REGULATION OF GENE EXPRESSION Overview of Regulation of Gene Expression, Prokaryotic versus Eukaryotic Gene Expression Prokaryotic gene regulation - inducible and repressive systems; operon concept – Lac operon and Trp operon Eukaryotic gene regulation -Epigenetic Control of Gene Expression, Transcriptional Control of Gene Expression, Post-transcriptional Control of Gene Expression, Translational Control of Gene Expression, Post-	7 1 3
	10	of proteins; role of chaperones in protein normal folding and protection. REGULATION OF GENE EXPRESSION Overview of Regulation of Gene Expression, Prokaryotic versus Eukaryotic Gene Expression Prokaryotic gene regulation - inducible and repressive systems; operon concept – Lac operon and Trp operon Eukaryotic gene regulation -Epigenetic Control of Gene Expression, Transcriptional Control of Gene Expression, Post-transcriptional Control	7 1 3
IV	10 11 12	of proteins; role of chaperones in protein normal folding and protection. REGULATION OF GENE EXPRESSION Overview of Regulation of Gene Expression, Prokaryotic versus Eukaryotic Gene Expression Prokaryotic gene regulation - inducible and repressive systems; operon concept – Lac operon and Trp operon Eukaryotic gene regulation -Epigenetic Control of Gene Expression, Transcriptional Control of Gene Expression, Post-transcriptional Control of Gene Expression, Translational Control of Gene Expression, Post- translational Control of Gene Expression.	7 1 3
	10	of proteins; role of chaperones in protein normal folding and protection. REGULATION OF GENE EXPRESSION Overview of Regulation of Gene Expression, Prokaryotic versus Eukaryotic Gene Expression Prokaryotic gene regulation - inducible and repressive systems; operon concept – Lac operon and Trp operon Eukaryotic gene regulation -Epigenetic Control of Gene Expression, Transcriptional Control of Gene Expression, Post-transcriptional Control of Gene Expression, Translational Control of Gene Expression, Post- translational Control of Gene Expression. PRACTICUM Study the structure and types of DNA and RNA using models and	7 1 3 3
	10 11 12 13	of proteins; role of chaperones in protein normal folding and protection. REGULATION OF GENE EXPRESSION Overview of Regulation of Gene Expression, Prokaryotic versus Eukaryotic Gene Expression Prokaryotic gene regulation - inducible and repressive systems; operon concept – Lac operon and Trp operon Eukaryotic gene regulation -Epigenetic Control of Gene Expression, Transcriptional Control of Gene Expression, Post-transcriptional Control of Gene Expression, Translational Control of Gene Expression, Post- translational Control of Gene Expression. PRACTICUM Study the structure and types of DNA and RNA using models and pictograms.	7 1 3 3
	10 11 12 13 14	of proteins; role of chaperones in protein normal folding and protection. REGULATION OF GENE EXPRESSION Overview of Regulation of Gene Expression, Prokaryotic versus Eukaryotic Gene Expression Prokaryotic gene regulation - inducible and repressive systems; operon concept – Lac operon and Trp operon Eukaryotic gene regulation -Epigenetic Control of Gene Expression, Transcriptional Control of Gene Expression, Post-transcriptional Control of Gene Expression, Translational Control of Gene Expression, Post- translational Control of Gene Expression. PRACTICUM Study the structure and types of DNA and RNA using models and pictograms. Isolation and purification of DNA.	7 1 3 3
	10 11 12 13 14 15	of proteins; role of chaperones in protein normal folding and protection. REGULATION OF GENE EXPRESSION Overview of Regulation of Gene Expression, Prokaryotic versus Eukaryotic Gene Expression Prokaryotic gene regulation - inducible and repressive systems; operon concept – Lac operon and Trp operon Eukaryotic gene regulation -Epigenetic Control of Gene Expression, Transcriptional Control of Gene Expression, Post-transcriptional Control of Gene Expression, Translational Control of Gene Expression, Post- translational Control of Gene Expression. PRACTICUM Study the structure and types of DNA and RNA using models and pictograms. Isolation and purification of DNA. Extraction of DNA from liver/spleen.	7 1 3 3
	10 11 12 13 14 15 16	of proteins; role of chaperones in protein normal folding and protection. REGULATION OF GENE EXPRESSION Overview of Regulation of Gene Expression, Prokaryotic versus Eukaryotic Gene Expression Prokaryotic gene regulation - inducible and repressive systems; operon concept – Lac operon and Trp operon Eukaryotic gene regulation -Epigenetic Control of Gene Expression, Transcriptional Control of Gene Expression, Post-transcriptional Control of Gene Expression, Translational Control of Gene Expression, Post- translational Control of Gene Expression. PRACTICUM Study the structure and types of DNA and RNA using models and pictograms. Isolation and purification of DNA. Extraction of DNA from liver/spleen. Estimation of DNA by DPA method.	7 1 3 3
	10 11 12 13 13 14 15 16 17	of proteins; role of chaperones in protein normal folding and protection. REGULATION OF GENE EXPRESSION Overview of Regulation of Gene Expression, Prokaryotic versus Eukaryotic Gene Expression Prokaryotic gene regulation - inducible and repressive systems; operon concept – Lac operon and Trp operon Eukaryotic gene regulation -Epigenetic Control of Gene Expression, Transcriptional Control of Gene Expression, Post-transcriptional Control of Gene Expression, Translational Control of Gene Expression, Post- translational Control of Gene Expression. PRACTICUM Study the structure and types of DNA and RNA using models and pictograms. Isolation and purification of DNA. Extraction of DNA from liver/spleen. Estimation of RNA by Orcinol method.	7 1 3 3
	10 11 12 13 14 15 16	of proteins; role of chaperones in protein normal folding and protection. REGULATION OF GENE EXPRESSION Overview of Regulation of Gene Expression, Prokaryotic versus Eukaryotic Gene Expression Prokaryotic gene regulation - inducible and repressive systems; operon concept – Lac operon and Trp operon Eukaryotic gene regulation -Epigenetic Control of Gene Expression, Transcriptional Control of Gene Expression, Post-transcriptional Control of Gene Expression, Translational Control of Gene Expression, Post- translational Control of Gene Expression. PRACTICUM Study the structure and types of DNA and RNA using models and pictograms. Isolation and purification of DNA. Extraction of DNA from liver/spleen. Estimation of DNA by DPA method. Estimation of RNA by Orcinol method. Demonstration of basic techniques in molecular biology-PCR,	7 1 3 3
	10 11 12 13 13 14 15 16 17	of proteins; role of chaperones in protein normal folding and protection. REGULATION OF GENE EXPRESSION Overview of Regulation of Gene Expression, Prokaryotic versus Eukaryotic Gene Expression Prokaryotic gene regulation - inducible and repressive systems; operon concept – Lac operon and Trp operon Eukaryotic gene regulation -Epigenetic Control of Gene Expression, Transcriptional Control of Gene Expression, Post-transcriptional Control of Gene Expression, Translational Control of Gene Expression, Post- translational Control of Gene Expression. PRACTICUM Study the structure and types of DNA and RNA using models and pictograms. Isolation and purification of DNA. Extraction of DNA from liver/spleen. Estimation of RNA by Orcinol method.	7 1 3 3

		techniques.	
ſ	20	Plan, design and execute simple molecular biology-based group research	
		projects or assignments.	

REFERENCES

- 1. Darnell, J. et al. Molecular Cell Biology. Scientific American Book
- 2. Freifelder, D. Molecular Biology. Narosa Publishing House, N. D.
- 3. Karp G. (2005). Cell and Molecular Biology. 4 e, John Wiley & Sons, Inc.
- 4. Kleinsmith, L. J. & Kish, V. M. (1995). Principles of Cell and Molecular Biology. 2e, Harper Collins College Pubs
- 5. Micklos, D. A. & Freyer, G. A. (1990). DNA Science. Cold-Spring Harbour Lab Press.
- 6. Primrose, S. B. et al. (2000). Principles of Gene Manipulation, 6e, Blackwell Science.
- 7. Veera Bala Rastogi. (2006). Fundamentals of Molecular Biology 1 e. Ane Books, India
- 8. Verma, P. S. & Agarwal, V. K. Cytology. S. Chand & Co.
- 9. Alberts, B. et al. Molecular Biology of the Cell. Garland Pubg. Inc., New York

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Describe the principles and concepts of molecular biology	R,U	3
CO-2	Identify and describe the structure and function of DNA, RNA, and proteins, DNA repair mechanisms, the roles of enzymes involved in DNA replication, process of transcription	R, U	3
CO-3	Explain the mechanisms of gene expression, transcription and translation process.	R,U,E	3
CO-4	Explain the pathways of regulation of gene expression techniques.	R,U,Ap	3,5
CO-5	Comprehend and apply the knowledge of basic molecular biology techniques to the separation and analyses of biomolecules.	U, Ap, An	3,5
CO-6	Plan, design and execute simple molecular biology - based group research projects.	Ap, An, E, C	3,7,8
CO-7	Integrate the knowledge acquired through the course to predict future directions in molecular biology resrarch.	An, E, Ap, C	3,8

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Molecular Biology

Credits: 3:1 (Lecture:Practical)

CO No.	СО	PSO	РО	Cognitive Level	Knowledge Category	Lecture (L)/ Tutorial (T)	Practical (P)
1	Describe the principles and	3	1	R,U	F, C	L	

		T					
	concepts of						
	molecular						
	biology						
2	Identify and	3	1	R, U	F, C	L	
	describe the						
	structure and						
	function of						
	DNA, RNA,						
	and proteins,						
	DNA repair						
	mechanisms,						
	the roles of						
	enzymes						
	involved in						
	DNA						
	replication,						
	process of						
2	transcription	2	1	DUE	EC	т	
3	Explain the	3	1	R,U,E	F,C	L	
	mechanisms of						
	gene .						
	expression,						
	transcription						
	and translation						
	process.						
4	Explain the	3,5	1	R,U,Ap	F,C	L	
	pathways of						
	regulation of						
	gene expression						
	techniques.						
5	Comprehend	3,5	1	U, Ap, An	F,C,P		Р
	and apply the						
	knowledge of						
	basic molecular						
	biology						
	techniques to						
	the separation						
	and analyses of						
	biomolecules.						
6	Plan, design	3,7,8	2,5,6	Ap, An, E,	F,C,P		Р
0	and execute	5,7,0	2,3,0	C Ap, All, E,	1,0,1		1
				C			
	simple molecular						
	biology -based						
	group research						
-	projects.	2.0	1055		EGDI		D
7		1 2 0	1756	An, E, Ap,	F,C,P,M		Р
,	Integrate the	3,8	1,2,5,6		1,0,1,111		
	knowledge	5,8	1,2,3,0	C	1,0,1,11		
		3,8	1,2,3,0		1,0,1,11		

course to predict future directions in molecular biology resrarch.						
---	--	--	--	--	--	--

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO 1	-	-	3	-	-	-	-	-
CO 2	-	-	3	-	-	-	-	-
CO 3	-	-	3	-	-	-	-	-
CO 4	-	-	3	-	3	-	-	-
CO 5	-	-	3	-	2	-	-	-
CO 6	-	-	3	-	-	-	2	3
CO-7	-	-	3	-	-	-	-	3

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
C01	3	-	-	-	-	-	-
CO2	3	-	-	-	-	-	-
CO3	3	-	-	-	-	-	-
CO4	3	-	=	-	-	-	-
CO5	3	-	=	-	-	-	-
CO6	-	3	-	-	3	3	-
CO7	3	3	-	-	3	3	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

Assignment/discussion/quiz/seminar/presentation

- Project Evaluation
- Internal Exam
- End semester exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	<u>_</u>			
CO 4				
CO 5	./	./		
CO 6	V	V		
CO7	 ✓			

Discipline	ZOOLOGY				
Course Code	MIUK5DSEZOO300).1			
Course Title	MICROBIOLOGY	AND INFE	CTIOUS DI	SEASES	
Type of Course	DSE				
Semester	V				
Academic	300 - 399				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours/Week
	4	3 hours	-	2 hours	5
Pre-requisites	Basic knowledge on	microorgani	sms		
Course	This course provides	an understan	nding of mic	robial structur	re and function
Summary	with regards to their	role in patl	nogenesis an	d infection.	The biology of
	bacterial, viral and	fungal patho	ogens and the	he diseases t	hey cause are
	covered. The course	explores the	e mechanism	of pathogeni	city, modes of
	transmission, and exp	plores ways r	nicrobes eva	de host defen	ce system. The
	course explores impa	ct of various	virulence fa	ctors possesse	ed by microbes
	in pathogenicity and	their role in e	establishing i	nfection.	

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		INTRODUCTION TO MICROBIOLOGY	10
	1	Introduction – Definition, scope and history of microbiology.	1
	2	Classification and characterization of bacteria, viruses, fungi and	3
		protozoa (Brief account only)	
	3	Survey of harmful and beneficial microbes. Normal human microbiota of	4
		various organs. Microbiota replacement therapies	
	4	Sterilization - concept of sterilization, methods of sterilization - dry heat,	2
		wet heat or steam, radiation, chemical and filtration.	
II	N	IICROBIAL CELL STRUCTURE, NUTRITION AND GROWTH	10
	5	Bacterial cell- ultra structure and function of different components.	2
		Structure of Gram positive and Gram-negative bacteria	
	6	Viruses- Structure and chemical composition of the viruses, Viral Capsid,	2
		Viral Envelope, Viral Nucleic Acids.	
	7	Nutrition-Types of culture media- complex medium, synthetic medium,	4
		selective and non- selective medium	
		Pure culture Methods: Direct plating, Serial dilution technique, Spread	

		plate, Streak plate, Pour plate; Slant culture and Stab culture	
	8	Microbial growth - overview of cell growth, generation time,	2
		measurement of growth. Typical growth curve, effect of environmental	
		factors on growth.	
III		MICROBIAL DISEASES IN HUMANS	15
	9	Pathogenic Microorganisms (bacteria, fungi, viruses) virulence factors	3
		and mechanisms of pathogenesis.	
	10	Host-microbe interaction – process of infection	2
	11	Bacterial diseases: Brief account on causes, symptoms and prophylaxis	4
		Airborne bacterial diseases - Streptococcal diseases, Tuberculosis.	
		Food borne and waterborne infections - Botulism; Typhoid fever,	
		Cholera, Shigellosis, E. coli Diarrhea (Traveller's diarrhea).	
		Soil borne bacterial diseases- Anthrax, Tetanus, Leptospirosis.	
	12	Viral diseases: Brief account on causes, symptoms and prophylaxis	4
		Pneumotropic viral diseases - Influenza, Adenoviral infections,	
		Rhinoviral infections, MERS, SARS	
		Dermatoviral diseases - Herpes simplex, chickenpox, Measles, Rubella; Viscerotropic Viral diseases - yellow fever, Dengue fever.	
		Neurotropic viral diseases - Rabies, Polio, H1N1, Nipah.	
	13	Fungal diseases: Brief account on causes, symptoms and prophylaxis-	2
	15	Aspergillosis, Candidiasis	2
		Protozoan diseases: Brief account on causes, symptoms and prophylaxis-	
		Amoebiasis, Malaria	
IV			10
IV		ANTIMICROBIAL CHEMOTHERAPY AND ANTIBIOTIC RESISTANCE	10
IV	14	ANTIMICROBIAL CHEMOTHERAPY AND ANTIBIOTIC RESISTANCE	10 5
IV	14	ANTIMICROBIAL CHEMOTHERAPY AND ANTIBIOTIC RESISTANCE Main groups of antibacterial, antifungal and antiviral drugs: mechanisms	
IV	14 15	ANTIMICROBIAL CHEMOTHERAPY AND ANTIBIOTIC RESISTANCE Main groups of antibacterial, antifungal and antiviral drugs: mechanisms of action and spectrum.	
IV		ANTIMICROBIAL CHEMOTHERAPY AND ANTIBIOTIC RESISTANCE Main groups of antibacterial, antifungal and antiviral drugs: mechanisms	5
IV		ANTIMICROBIAL CHEMOTHERAPY AND ANTIBIOTIC RESISTANCE Main groups of antibacterial, antifungal and antiviral drugs: mechanisms of action and spectrum. Mechanisms of resistance to antibacterial agents: emergence and spread	5
	15	ANTIMICROBIAL CHEMOTHERAPY AND ANTIBIOTIC RESISTANCE Main groups of antibacterial, antifungal and antiviral drugs: mechanisms of action and spectrum. Mechanisms of resistance to antibacterial agents: emergence and spread of antibiotic resistance PRACTICUM	5 5
	15	ANTIMICROBIAL CHEMOTHERAPY AND ANTIBIOTIC RESISTANCE Main groups of antibacterial, antifungal and antiviral drugs: mechanisms of action and spectrum. Mechanisms of resistance to antibacterial agents: emergence and spread of antibiotic resistance PRACTICUM Familiarization of laboratory instruments for microbiology- Microscope,	5 5
	15 16	ANTIMICROBIAL CHEMOTHERAPY AND ANTIBIOTIC RESISTANCE Main groups of antibacterial, antifungal and antiviral drugs: mechanisms of action and spectrum. Mechanisms of resistance to antibacterial agents: emergence and spread of antibiotic resistance PRACTICUM Familiarization of laboratory instruments for microbiology- Microscope, Incubator, Autoclave, Laminar air flow	5 5
	15	ANTIMICROBIAL CHEMOTHERAPY AND ANTIBIOTIC RESISTANCE Main groups of antibacterial, antifungal and antiviral drugs: mechanisms of action and spectrum. Mechanisms of resistance to antibacterial agents: emergence and spread of antibiotic resistance PRACTICUM Familiarization of laboratory instruments for microbiology- Microscope,	5 5
	15 16	ANTIMICROBIAL CHEMOTHERAPY AND ANTIBIOTIC RESISTANCE Main groups of antibacterial, antifungal and antiviral drugs: mechanisms of action and spectrum. Mechanisms of resistance to antibacterial agents: emergence and spread of antibiotic resistance PRACTICUM Familiarization of laboratory instruments for microbiology- Microscope, Incubator, Autoclave, Laminar air flow	5 5
	15 16 17	ANTIMICROBIAL CHEMOTHERAPY AND ANTIBIOTIC RESISTANCE Main groups of antibacterial, antifungal and antiviral drugs: mechanisms of action and spectrum. Mechanisms of resistance to antibacterial agents: emergence and spread of antibiotic resistance PRACTICUM Familiarization of laboratory instruments for microbiology- Microscope, Incubator, Autoclave, Laminar air flow Cleaning and sterilization of glassware for microbiology.	5 5
	15 16 17 18	ANTIMICROBIAL CHEMOTHERAPY AND ANTIBIOTIC RESISTANCE Main groups of antibacterial, antifungal and antiviral drugs: mechanisms of action and spectrum. Mechanisms of resistance to antibacterial agents: emergence and spread of antibiotic resistance PRACTICUM Familiarization of laboratory instruments for microbiology- Microscope, Incubator, Autoclave, Laminar air flow Cleaning and sterilization of glassware for microbiology. Staining of bacteria by simple staining and Gram staining Motility testing by hanging drop method	5 5
	15 16 17 18 19	ANTIMICROBIAL CHEMOTHERAPY AND ANTIBIOTIC RESISTANCE Main groups of antibacterial, antifungal and antiviral drugs: mechanisms of action and spectrum. Mechanisms of resistance to antibacterial agents: emergence and spread of antibiotic resistance PRACTICUM Familiarization of laboratory instruments for microbiology- Microscope, Incubator, Autoclave, Laminar air flow Cleaning and sterilization of glassware for microbiology. Staining of bacteria by simple staining and Gram staining	5 5
	15 16 17 18 19	ANTIMICROBIAL CHEMOTHERAPY AND ANTIBIOTIC RESISTANCE Main groups of antibacterial, antifungal and antiviral drugs: mechanisms of action and spectrum. Mechanisms of resistance to antibacterial agents: emergence and spread of antibiotic resistance PRACTICUM Familiarization of laboratory instruments for microbiology- Microscope, Incubator, Autoclave, Laminar air flow Cleaning and sterilization of glassware for microbiology. Staining of bacteria by simple staining and Gram staining Motility testing by hanging drop method Techniques for isolation of bacteria – serial dilution, pour plate, spread plate techniques	5 5 30
	15 16 17 18 19 20	ANTIMICROBIAL CHEMOTHERAPY AND ANTIBIOTIC RESISTANCE Main groups of antibacterial, antifungal and antiviral drugs: mechanisms of action and spectrum. Mechanisms of resistance to antibacterial agents: emergence and spread of antibiotic resistance PRACTICUM Familiarization of laboratory instruments for microbiology- Microscope, Incubator, Autoclave, Laminar air flow Cleaning and sterilization of glassware for microbiology. Staining of bacteria by simple staining and Gram staining Motility testing by hanging drop method Techniques for isolation of bacteria – serial dilution, pour plate, spread plate techniques Microbiological examination of water samples and enumeration of bacteria	5 5 30
	15 16 17 18 19 20	ANTIMICROBIAL CHEMOTHERAPY AND ANTIBIOTIC RESISTANCE Main groups of antibacterial, antifungal and antiviral drugs: mechanisms of action and spectrum. Mechanisms of resistance to antibacterial agents: emergence and spread of antibiotic resistance PRACTICUM Familiarization of laboratory instruments for microbiology- Microscope, Incubator, Autoclave, Laminar air flow Cleaning and sterilization of glassware for microbiology. Staining of bacteria by simple staining and Gram staining Motility testing by hanging drop method Techniques for isolation of bacteria – serial dilution, pour plate, spread plate techniques Microbiological examination of water samples and enumeration of bacteria Inhibition of microorganisms by antibacterial agents by agar well	5 5 30
	15 16 17 18 19 20 21	ANTIMICROBIAL CHEMOTHERAPY AND ANTIBIOTIC RESISTANCE Main groups of antibacterial, antifungal and antiviral drugs: mechanisms of action and spectrum. Mechanisms of resistance to antibacterial agents: emergence and spread of antibiotic resistance PRACTICUM Familiarization of laboratory instruments for microbiology- Microscope, Incubator, Autoclave, Laminar air flow Cleaning and sterilization of glassware for microbiology. Staining of bacteria by simple staining and Gram staining Motility testing by hanging drop method Techniques for isolation of bacteria – serial dilution, pour plate, spread plate techniques Microbiological examination of water samples and enumeration of bacteria	5 5 30

REFERENCE

Bernard D. Davis. Renato Dulbecco. Herman N. Eisen.and Harold, S.Ginsberg. (1990).
 Microbiology (4th edition). J.B. Lippincott company, NewYork.

2. Prescott L.M. Harley J.P. and Klein D.A. (2003). Microbiology (5th edition) McGraw Hill,

New York.

3. Madigan, M.T. Martinko. J.M and Parker J Brock T.D.(2017)Biology of Microorganisms.(15th edition).Prentice Hall International Inc, London.

4. Pelczar Jr, M.J. Chan, E.C.S. and Kreig, N.R. (2006). Microbiology, Mc. Graw Hill. Inc, NewYork.

5. Salle, A.J. (1996). Fundamental principles of Bacteriology.(7thedition).Tata McGraw-Hill publishing company Ltd, NewDelhi.

6. James G. Cappucina, Natalie Sherman. (1996). Microbiology – A laboratory manual, The Benjamin (Cummings Publishing C ompany,Inc.)

7. Mackie and McCartney. (1989). Practical Medical Microbiology, ChurchillLivingston.

8. Tortora, G.J., Funke, B.R. and Case, C.L. 2012. Microbiology – An Introduction. 11th Edition. Pearson Education.

No.	Upon completion of the course the graduate will be	Cognitive	PSO
	able to	Level	addressed
CO-1	Explain the principles of microbial taxonomy.	R, U	1
CO-2	Develop the skill of microbial staining, culturing, isolation and characterisation of microbes.	Ap, An	5,8
CO-3	Explain the morphological features and structural components of microbes	U	5
CO-4	Gain conceptual basis for identifying pathogenic microorganisms and the mechanisms by which they cause disease in the human body.	U, E	7,8
CO-5	Analyze antimicrobial chemotherapy and antibiotic resistance	U,An	5,8

Course Outcomes

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create Name of the Course: MICROBIOLOGY AND INFECTIOUS DISEASES Credits: 3:1 (Lecture: Practical)

CO CO Cognitive **Practical** POs **PSOs** Knowledge Lecture (L) Level /Tutorial (T) No. Category **(P)** С Р 1 Explain the 1 R.U L 1 principles of microbial taxonomy. 2 Develop the skill 1.6 5.8 Ρ L Р Ap, An of microbial

	staining, culturing, isolation and characterisation of microbes.						
3	Explain the morphological features and structural components of microbes	1	5	U	F	L	Р
4	Gain conceptual basis for identifying pathogenic microorganisms and the mechanisms by which they cause disease in the human body.	1,2	7,8	U, E	М	L	Р
5	Analyze antimicrobial chemotherapy and antibiotic resistance	1,2	5,8	U, An	М	L	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO 1	2	-	-	-	-	-	-	-
CO 2	-	-	-	3	-	-	-	-
CO 3	-	-	-	-	2	-		
CO 4	-	-	-	-	-	-	2	2
CO 5	-	-	-	-	-	-	1	2

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	-	-	-	-	-	-
CO2	3	-	-	-	-	3	-
CO3	3	-	-	-	-	-	-
CO4	3	1	-	-	-	-	-

Γ	CO5	3	2	-	-	-	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/discussion/quiz/seminar/presentation
- Project Evaluation
- Internal Exam
- End semester exam

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark	\checkmark	\checkmark	
CO 3	\checkmark			\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

Discipline	ZOOLOGY							
Course Code	MIUK5DSEZOO30	MIUK5DSEZOO301.1						
Course Title	GENETIC ENGIN	EERING						
Type of Course	DSE							
Semester	V							
Academic	300 - 399							
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours/Week			
	4	3 hours	-	2 hours	5			
Pre-requisites	Good knowledge in	cell biology	and genetics	•				
Course	Genetic engineering	is a branc	h of biology	y that studies	s how to use			
Summary	biotechnology to ma	nipulate an c	organism's D	NA and gene	s to change or			
	modify an organism'	s characteris	tics. A new I	DNA strand c	an be inserted			
	into an organism's e	existing gene	s or artificia	l synthesis c	an be used to			
	modify an organism	's genes to a	lter a particu	lar trait or fu	nction. These			
	species that have	undergone g	genetic mod	ification are	subsequently			
	employed for severa	al objectives.	For instanc	e, an animal	may undergo			
	genetic modification	0	1					
	medicine have benef	fited greatly	from the gro	und-breaking	g research that			
	genetic engineering l	has produced						

Detailed Syllabus:

Module	Unit	Content	Hrs				
Ι		TOOLS IN GENETIC ENGINEERING					
	1	Definitions and landmarks in the history of biotechnology.	3				
		Major areas of biotechnology (Brief outline only).					
	2	Nucleases: Exonucleases and Endonucleases, Restriction Enzymes (Type	2				
		I, Type II, Type III, Type IV & Type V), RNases.					
	Methylases: CpG Methylase, Dam Methylase, Dcm Methylase.						
	3 Polymerases: DNA Pol I, Klenow Fragments, Reverse Transcriptase,						
		& Pfu Polymerases.					
		Ligases: T4 DNA Ligase, E.coli DNA Ligase, T4 RNA Ligase.					
	4	Topoisomerases: Type I(A, B) & Type II(A,B).	2				
		End Modifying Enzymes: Terminal Transferase, T4 Polynucleotide					
		Kinase, Alkaline Phosphatases.					
		VECTORS IN GENE CLONING	5				
	5	Introduction to cloning vectors, Desirable properties of vectors,	3				
		Prokaryotic & Eukaryotic Expression Systems (Constitutive &					
		Inducible).					

	6	Plasmid Vectors, Phage Vectors, Cosmids, Phagemids.	2
		BACs, Yeast Vectors, YACs, Lentiviral Vectors, Adenoviral Vectors,	
		Plant Vectors, Insect Vectors.	
		TECHNIQUES OF GENETIC ENGINEERING	
III			15
	7	Recombinant DNA (rDNA) techniques.	3
	8	Gene cloning: Methods of integration of DNA fragments into the vector.	2
	9	Methods of rDNA transfer in Plants and Animals: Chemical, Physical &	2
		Viral mediated DNA transfer.	
	10	PCR and its types.	2
		Construction of Genomic & cDNA Libraries. DNA Sequencing.	
		Protein Engineering: Site Directed Mutagenesis Reporter Gene Assays	2
		DNA Protein Interactions: EMSA, DNA Footprinting	
		Protein Protein Interactions: Y2H, Y3H, B1H, B2H	
	11	Hybridization techniques: Southern, Western, Northern Blotting.	2
TX 7	12	Animal cell, tissue and organ culture and their significance.	2
IV		APPLICATIONS OF GENETIC ENGINEERING	15
	13	Overview of the diverse applications of genetic engineering.	2
	13	Gene therapy and its potential in treating genetic disorders.	3
	15	Gene Targeting: Knock-ins & Knock-outs	3
	16	CRISPR Cas9 mediated gene editing.	1
	17	RNA interference.	1
	18	Synthetic biology.	1
	19	Diagnostic Applications: DNA fingerprinting and its applications in	2
	20	forensics.	2
	20	Use of genetic engineering in the development of therapeutics and	2
		vaccines. Production of biopharmaceuticals using recombinant DNA technology.	
V		PRACTICUM	30
V	21	Preparation of nutrient agar broth.	30
	21	Techniques of sterilization using autoclave.	
	23	Estimation of DNA & RNA.	
	24	Estimation of Protein.	
	25	Isolation of DNA and RNA.	
	26	Electrophoresis.	

Reference:

- 1. Watson JD, Hopkins WH, Roberts JW, Steitz JA, Weiner AM, (2008). Molecular Biology of the Gene (6th edition).
- 2. Burton E. Tropp, (2011). Molecular Biology, Genes to proteins-Jones and Bartlett learning publications (4th Edition).
- 3. WT. Godbey, (2021). Biotechnology and its applications-Elsevier Science (2nd Edition).
- 4. Benjamin Lewin, (2017). Gene XII, Oxford University Press (12th edition).

- 5. William J. Thieman, Michael A. Palladino, (2014). Introduction to Biotechnology-Pearson
- 6. Michael R. Green, Joseph Sambrook Molecular Cloning: A Laboratory Manual (2012). Cold spring harbor laboratory press.

No.	Upon completion of the course the graduate will be	Cognitive	PSO
	able to	Level	addressed
CO-1	They learn basics of biotechnology.	R, U	5,6,7,8
	Gain knowledge about different genetic exchange		
	methods.		
CO-2	Understand various steps involved in genetic	U	5,6,7,8
	engineering and tools involved in it.		
CO-3	Attain knowledge about gene manipulation and gene	U, Ap, An	5,6,7,8
	expression which prepares them for further studies in		
	the area of genetic engineering		
CO-4	Students learn about transgenic animals, their	U, Ap, An	5,6,7,8
	application in the pharmaceutical industry, cloning		
	and its importance.		
CO-5	Acquaint with principles, technical requirement,	Ap, An	5,6,7,8
	scientific and commercial applications various genetic		
	engineering tools.		

Course Outcomes

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Genetic engineering

Credits: 3:0:1 (Lecture: Tutorial: Practical)

CO No.	СО	РО	PSO	Cognitive Level	Knowledge Category	Lecture (L)/ Tutorial (T)	Practical (P)
1	1	1,2,5, 6	5, 6,7,8	U, An, Ap	С, Р	L/T	
2	2	1,2,5, 6	5,6, 7, 8	U, An, Ap	С, Р	L/T	
3	3	1,2,5, 6	5, 6, 7,8	U, An, Ap	C,P	L/T	
4	4	1,2,5, 6	5,6, 7,8	U, An, Ap	С, Р	L/T	
5	5	1,2,5, 6	4,7,8	U, An, Ap	С, Р		Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO	PSO	PSO	PSO4		PSO	PSO	PSO
	I	2	- 3		05	6	1	8
CO 1	-	-	-	_	3	3	2	3
CO 2	-	-	-	-	3	3	2	3
CO 3	-	-	-	-	3	3	2	3

CO 4	-	-	-	-	3	3	2	3
CO 5	-	-	-	3	1	1	2	3

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	2	-	-	3	3	-
CO2	3	2	-	-	3	3	-
CO3	3	2	-	-	3	3	-
CO4	3	2	-	-	3	3	-
CO5	3	2	-	-	3	3	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/discussion/quiz/seminar/presentation
- Project Evaluation
- Internal Exam
- End semester exam

	Internal Exam	Assignment	Project evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		

Discipline	ZOOLOGY								
Course Code	MIUK5SECZOO300	.1							
Course Title	BASIC LABORATO	ORY ANIM	AL PRACT	ICES					
Type of Course	SEC								
Semester	V								
Academic	300 - 399								
Level									
Course Details	Credit	Credit Lecture Tutorial Practical Total							
		per week	per week	per week	Hours/Week				
	3	2 hours	-	2	4				
Pre-requisites	Those who are interest	sted to impro	ve their anim	al studies kno	owledge and				
	job prospects by expl	oring differe	nt animal sci	ence courses.					
Course	The course provides	knowledge a	about the bas	sic principles	in laboratory				
Summary	animal care and man	agement as	well as the g	guidelines to	follow during				
	animal experimentation. Hands-on training will be provided in laboratory								
	animal care, management and experiments. Visit to an established								
	CCSEA-registered an	nimal house	is mandator	ry for the co	urse. Specific				
	sessions will be hand	led by scient	ists/faculties	with expertise	e in the field.				

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		BASIC PRINCIPLES OF LABORATORY ANIMAL CARE AND EXPERIMENTAL TECHNIQUES	10
	1	General introduction to research animals of various species.	1
	2	Biology and behaviour, Basic laboratory animal husbandry practices.	1
	3	Animal facility layout and functional units, general routine sanitation and hygiene practices, cleaning, washing and sterilization of animal cages, racks, and bedding.	3
	4	Basic experimental techniques on laboratory animals like animal handling and restraining, routes of administration, sampling techniques, autopsy techniques, anesthesia and euthanasia in animals.	5
II	PATI	HOPHYSIOLOGY OF COMMONLY OCCURRING DISEASES AND THEIR PREVENTIVE MEASURES	10
	5	Basic introduction to common diseases observed in animals.	3
	6	Implementation of health, monitoring program and methodologies.	5
	7	Prevention and treatment of diseases.	2
		ANIMAL NUTRITION	5

III	8	Nutritional requirements of laboratory animals (mice and rat),	
	Ū	feeding frequency, antinutritional factors.	2
	9	Storage and distribution of animal feed.	3
IV	A	ANIMALS ETHICS, WELFARE, RECORD KEEPING AND DOCUMENTATION	5
	10	Basic concepts on animal welfare and ethics. Introduction to national and international regulations and guidelines related to animal welfare.	1
	11	Preparation and designing animal experimental protocol, Institutional Animal Ethics Committee (IAEC), its constitution and its SOPs.	2
	12	Recording and upkeep of various records related to animal breeding and receipt.	1
	13	Distribution and dispatch of animals, feed and bedding, disposal records.	1
V(P)		PRACTICUM	30
	14	Animal handling and restraining.	
	15	Routes of drug administration.	
	16	Sampling techniques.	
	17	Necropsy procedures and euthanasia.	

Reference:

1. Hatwar Bhushan P. Animal Handling Techniques & amp; Protocol Development Strategies.

1 st Edition. JayPee Brothers Medical Publishers, India; 2014.

 National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals.
 8th edition. Washington (DC): National Academies Press (US); 2011. Available from: https://www.ncbi.nlm.nih.gov/books/NBK54050/ doi: 10.17226/12910.

No.	Upon completion of the course the graduate will be	Cognitive	PSO
	able to	Level	addressed
CO-1	Maintain, handle, restrain and care for small	U, Ap	7,8
	laboratory animals.	-	
CO-2	Administer drugs through oral and sub-cutaneous	U, Ap	7,8
	routes.	_	
CO-3	Maintain the needed documents and records	U, Ap	7,8
	according to CCSEA guidelines.		
CO-4	Carry out experiments in small laboratory animals	U, AP	7,8
	such as mice.		

Course Outcomes

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Basic laboratory animal practices

Credits: 2:0:1 (Lecture: Tutorial: Practical)

CO	CO	РО	PSO	Cognitive	Knowledge	Lecture (L)/	Practical
No.				Level	Category	Tutorial (T)	(P)

1	1	1,5,6	7,8	U, An, Ap	С, Р	L/T	
2	2	1,5,6	7, 8	U, An, Ap	С, Р	L/T	
3	3	1,5,6	7,8	U, An, Ap	С, Р	L/T	
4	4	5,6	7,8	An, Ap	С, Р		Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO 1	-	-	-	-	-	-	3	3
CO 2	-	-	-	-	-	-	3	3
CO 3	-	-	-	-	-	-	3	3
CO 4	-	-	-	-	-	-	3	3

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	1	-	-	-	3	3	-
CO2	1	-	-	-	3	3	-
CO3	1	-	-	-	3	3	-
CO4	-	-	-	-	3	3	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/discussion/quiz/seminar/presentation
- Project Evaluation
- Internal Exam
- End semester exam

	Internal Exam	Assignment		End Semester
			evaluation	Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		

Discipline	ZOOLOGY						
Course Code	MIUK5SECZOO301	MIUK5SECZOO301.1					
Course Title	VERMICULTURE						
Type of Course	SEC						
Semester	V						
Academic	300 - 399						
Level							
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours/Week		
	3	2 hours	-	2 hours	4		
Pre-requisites	Class XII Pass.						
Course	The course provides			-	-		
Summary	earthworms which an importance of vermic	in vermiculturing. The course offers an understanding on the variety of earthworms which are used for vermiculturing. It helps to understand the importance of vermicomposting in organic farming. It provides knowledge in solid waste management by vermicompost preparation. It also develops					
	a skill in the	managemen			harvesting of		
	vermicomposing.						

Detailed Syllabus:

Module	Unit	Content	Hrs					
Ι		INTRODUCTION TO VERMICULTURE	5					
	1	Overview of vermiculture and its importance in waste manaagement.	5					
		Nature and species of earthworms: Habit categories - Epigeic,						
		endogeic and anecic,						
II	EARTHWORMS AND THEIR LIFE CYCLE							
	2	Indigenous and exotic species (Eudrillus eugeniae/Eisenia	3					
		foetidae/Perionyx excavatus/ Lampito mauritii)						
	3	Life cycle of composting worms and their role in decomposition.	4					
III		METHODOLOGY OF VERMICOMPOSTING	9					
	4	Step by step methodology – containers for culturing, raw materials	6					

		required preparation of bed, environmental pre-requisites, feeding, harvesting, and storage of vermicompost.	
	5	Advantages of composting, precautions to be taken to prevent attack by pests and pathogens.	3
IV		VERMICOMPOST PROFILE AND APPLIED ASPECTS	9
	6	Physical, chemical and biological parameters of vermicast, vermin enrichment,	6
	7	Economic uses of vermiculture -Biofertilizer, waste disposal, vermiwash, poultry feed, vermi-remediation etc.	3
V		PRACTICUM	30
	8	Bin Setup and Maintenance Worm Selection and Care:- Monitoring Composting Process, Harvest, Storage Worm Farm Visits/Expert Talks	

References

- 1. Hursh, C. (2002). *Basic Composting: All the Skills and Tools You Need to Get Started*. Stackpole Books.
- 2. Mary Appelhof.(1982). Worms eat my Garbage.
- 3. Munroe, G. (2007). Manual of on-farm vermicomposting and vermiculture. *Organic Agriculture Centre of Canada*, *39*, 40.
- 4. Sathe, T.V. (2004). Vermiculture and Organic farming, Daya Books.
- 5. Vijaykumaran Nair(2019). Vermiculture and Apiculture.

Course Outcomes

No.	Upon completion of the course the graduate will be	Cognitive	PSO
	able to	Level	Addressed
CO-1	Promote self-employment and self-reliance among educated youth	U,Ap	PSO-1,2
CO-2	Design the basic procedure and methodology of vermiculture	R, U	PSO-1,2
CO-3	Set up and maintain vermicomposting systems effectively.	U, Ap	PSO-1,2,4
CO-4	Appreciate the environmental benefits and sustainability aspects of vermiculture.	U, Ap	PSO-1,2,7

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create Credits: 2:1 (Lecture: Practical)

CO	СО	POs	PSOs	Cognitive	Knowledge	Lecture (L)/	Practica
No.				Level	Category	Tutorial (T)	l (P)
1	Promote self- employment and self-reliance among	1,5	PSO- 1,2	U	C	L	Р

	educated youth						
	Design the basic	1,5	PSO-	R, U, An	С	L	Р
2	procedure and methodology of vermiculture	,	1,2				
3	Set up and maintain vermicomposting systems effectively.	1,5	PSO- 1,2,4	U, Ap	C	L	Р
4	Appreciate the environmental benefits and sustainability aspects of vermiculture.	3	PSO- 1,2,7	E,U	С	L	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO 1	3	3	-	-	-	-	-	-
CO 2	3	3	-	-	-	-	-	-
CO 3	3	3	-	-	-	-	-	-
CO 4	3	3	-	3	-	-	-	-

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
C01	3	-	-	-	3	-	-
CO2	3	-	-	-	3	-	-
CO3	3	-	-	-	3	-	-
CO4	-	-	3	-	-	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/discussion/quiz/seminar/presentation
- Project Evaluation
- Internal Exam
- End semester exam

	Internal Exam	Assignment	Project evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark	cvaluation	\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

SEMESTER - VI

Discipline	ZOOLOGY					
Course Code	MIUK6DSCZOO303	8.1				
Course Title	HUMAN PHYSIOL	OGY				
Type of Course	DSC					
Semester	VI					
Academic	300 - 399					
Level						
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours/Week	
	4	3 hours	-	2 hours	5	
Pre-requisites	Knowledge about the	basic humar	n anatomy.			
Course	This course in huma	n physiology	provides a	comprehensiv	ve overview of	
Summary	the fundamental prin	ciples govern	ning the fund	ctioning of the	e human body.	
	Through a combinat	Through a combination of lectures, laboratory sessions, and interactive				
	discussions, students	will explor	re the intric	ate mechanis	ms underlying	
	various physiological	processes es	ssential for hu	ıman life.		

Detailed Syllabus:

Module	Unit	Content	Hrs
Ι		GENERAL AND CELLULAR PHYSIOLOGY	2
	1	Physiology – introduction. Scope of human physiology.	2
		Brief account on types of cells and levels of organisation of human	
		body.	
		Homeostasis and its significance.	
II	PH	IYSIOLOGY OF NERVE, MUSCLE AND SENSORY SYSTEMS	19
	2	NERVE PHYSIOLOGY	2
		Organisation of nervous system. Mention enteric nervous system and	
		gut-brain axis.	
		Cells in nervous system: neurons and glial cells.	
	3	Types of synapses. Neurotransmitters.	1
	4	Generation and propagation of nerve impulse. Synaptic transmission.	3
		All or none law. Reflex action. Electro encephalogram.	
		Mention nerve disorders – epilepsy, Alzheimer's disease, Parkinson's	
		disease.	
	5	MUSCLE PHYSIOLOGY	2
		Brief account on types of muscles. Ultra structure of striated muscle	
		fibre.	
	6	Physiological and molecular basis of muscle contraction.	2
	7	Simple muscle twitch. Summation. Rigor.	1
	8	SENSORY PHYSIOLOGY	4

		Types of sensory receptors and sense organs.	
		Vision: Physiology of vision, visual pigments, photo chemistry of	
		vision. Light and dark adaptation.	
		Eye defects – myopia, hyperopia, presbyopia, astigmatism, cataract.	
	9	Hearing and equilibrium: Mechanism of hearing. Role of vestibular	3
		system in maintaining equilibrium.	
		Hearing impairments – deafness, labyrinthitis.	
	10	Smell and taste: olfactory epithelium, odorant receptors. Taste buds.	1
		Taste receptors.	
III		PHYSIOLOGY OF CIRCULATORY, RESPIRATORY AND	13
		GASTROINTESTINAL SYSTEMS	
	11	CIRCULATORY PHYSIOLOGY	2
	10	Conducting system of heart. Cardiac cycle. Blood pressure and pulse.	
	12	Composition of blood. Blood groups. Structure of haemoglobin and	4
		myoglobin.	
		Mechanism of blood clotting - intrinsic and extrinsic pathways. Anticoagulants.	
		Lymph and its functions.	
	13	RESPIRATORY PHYSIOLOGY	2
	15	Pulmonary ventilation. Gas exchange in lungs. Transport of respiratory	2
		gases.	
		Mechanisms of pH and electrolyte balance in body.	
	14	GASTROINTESTINAL PHYSIOLOGY	3
		Enzymatic digestion and absorption of food – mechanical and chemical	
		changes of food in the alimentary canal.	
	15	Nutrition – essential dietary components. Role of gut microbiota in	2
		health and disease.	
IV	E	NDOCRINE, RENAL AND REPRODUCTIVE PHYSIOLOGY	11
IV	Е 16	NDOCRINE, RENAL AND REPRODUCTIVE PHYSIOLOGY ENDOCRINE SYSTEM	11 4
IV		NDOCRINE, RENAL AND REPRODUCTIVE PHYSIOLOGY ENDOCRINE SYSTEM Endocrine glands in man. Hormones and hormonal disorders.	
IV	16	NDOCRINE, RENAL AND REPRODUCTIVE PHYSIOLOGY ENDOCRINE SYSTEM Endocrine glands in man. Hormones and hormonal disorders. Regulation of endocrine function – feedback mechanism.	4
IV		NDOCRINE, RENAL AND REPRODUCTIVE PHYSIOLOGYENDOCRINE SYSTEMEndocrine glands in man. Hormones and hormonal disorders.Regulation of endocrine function – feedback mechanism.RENAL PHYSIOLOGY	
IV	16 17	NDOCRINE, RENAL AND REPRODUCTIVE PHYSIOLOGYENDOCRINE SYSTEMEndocrine glands in man. Hormones and hormonal disorders.Regulation of endocrine function – feedback mechanism.RENAL PHYSIOLOGYFormation of urine. Counter-current multiplier system.	4 2
IV	16	NDOCRINE, RENAL AND REPRODUCTIVE PHYSIOLOGYENDOCRINE SYSTEMEndocrine glands in man. Hormones and hormonal disorders.Regulation of endocrine function – feedback mechanism.RENAL PHYSIOLOGYFormation of urine. Counter-current multiplier system.Renal disorders – nephritis, haematuria, renal calculi, acidosis and	4
IV	16 17 18	NDOCRINE, RENAL AND REPRODUCTIVE PHYSIOLOGYENDOCRINE SYSTEMEndocrine glands in man. Hormones and hormonal disorders.Regulation of endocrine function – feedback mechanism.RENAL PHYSIOLOGYFormation of urine. Counter-current multiplier system.Renal disorders – nephritis, haematuria, renal calculi, acidosis and alkalosis. Dialysis.	4 2 1
IV	16 17	NDOCRINE, RENAL AND REPRODUCTIVE PHYSIOLOGYENDOCRINE SYSTEMEndocrine glands in man. Hormones and hormonal disorders. Regulation of endocrine function – feedback mechanism.RENAL PHYSIOLOGYFormation of urine. Counter-current multiplier system.Renal disorders – nephritis, haematuria, renal calculi, acidosis and alkalosis. Dialysis.REPRODUCTIVE PHYSIOLOGY	4 2
IV	16 17 18	NDOCRINE, RENAL AND REPRODUCTIVE PHYSIOLOGYENDOCRINE SYSTEMEndocrine glands in man. Hormones and hormonal disorders.Regulation of endocrine function – feedback mechanism.RENAL PHYSIOLOGYFormation of urine. Counter-current multiplier system.Renal disorders – nephritis, haematuria, renal calculi, acidosis and alkalosis. Dialysis.REPRODUCTIVE PHYSIOLOGYPhysiology of male reproduction, hormonal control of spermatogenesis.	4 2 1
IV	16 17 18	NDOCRINE, RENAL AND REPRODUCTIVE PHYSIOLOGYENDOCRINE SYSTEMEndocrine glands in man. Hormones and hormonal disorders.Regulation of endocrine function – feedback mechanism.RENAL PHYSIOLOGYFormation of urine. Counter-current multiplier system.Renal disorders – nephritis, haematuria, renal calculi, acidosis and alkalosis. Dialysis.REPRODUCTIVE PHYSIOLOGYPhysiology of male reproduction, hormonal control of spermatogenesis.Physiology of female reproduction, hormonal control of menstrual	4 2 1
IV	16 17 18	NDOCRINE, RENAL AND REPRODUCTIVE PHYSIOLOGYENDOCRINE SYSTEMEndocrine glands in man. Hormones and hormonal disorders. Regulation of endocrine function – feedback mechanism.RENAL PHYSIOLOGYFormation of urine. Counter-current multiplier system.Renal disorders – nephritis, haematuria, renal calculi, acidosis and alkalosis. Dialysis.REPRODUCTIVE PHYSIOLOGYPhysiology of male reproduction, hormonal control of spermatogenesis. Physiology of female reproduction, hormonal control of menstrual cycle.	4 2 1
	16 17 18	NDOCRINE, RENAL AND REPRODUCTIVE PHYSIOLOGYENDOCRINE SYSTEMEndocrine glands in man. Hormones and hormonal disorders.Regulation of endocrine function – feedback mechanism.RENAL PHYSIOLOGYFormation of urine. Counter-current multiplier system.Renal disorders – nephritis, haematuria, renal calculi, acidosis and alkalosis. Dialysis.REPRODUCTIVE PHYSIOLOGYPhysiology of male reproduction, hormonal control of spermatogenesis.Physiology of female reproduction, hormonal control of menstrual cycle.Fertilization, pregnancy and childbirth.	4 2 1 4
IV	16 17 18 19	 NDOCRINE, RENAL AND REPRODUCTIVE PHYSIOLOGY ENDOCRINE SYSTEM Endocrine glands in man. Hormones and hormonal disorders. Regulation of endocrine function – feedback mechanism. RENAL PHYSIOLOGY Formation of urine. Counter-current multiplier system. Renal disorders – nephritis, haematuria, renal calculi, acidosis and alkalosis. Dialysis. REPRODUCTIVE PHYSIOLOGY Physiology of male reproduction, hormonal control of spermatogenesis. Physiology of female reproduction, hormonal control of menstrual cycle. Fertilization, pregnancy and childbirth. PRACTICUM 	4 2 1
	16 17 18 19 20	NDOCRINE, RENAL AND REPRODUCTIVE PHYSIOLOGYENDOCRINE SYSTEMEndocrine glands in man. Hormones and hormonal disorders.Regulation of endocrine function – feedback mechanism.RENAL PHYSIOLOGYFormation of urine. Counter-current multiplier system.Renal disorders – nephritis, haematuria, renal calculi, acidosis and alkalosis. Dialysis.REPRODUCTIVE PHYSIOLOGYPhysiology of male reproduction, hormonal control of spermatogenesis.Physiology of female reproduction, hormonal control of menstrual cycle.Fertilization, pregnancy and childbirth.PRACTICUMStudy of different types of cells and tissues using permanent slides.	4 2 1 4
	16 17 18 19	NDOCRINE, RENAL AND REPRODUCTIVE PHYSIOLOGYENDOCRINE SYSTEMEndocrine glands in man. Hormones and hormonal disorders.Regulation of endocrine function – feedback mechanism.RENAL PHYSIOLOGYFormation of urine. Counter-current multiplier system.Renal disorders – nephritis, haematuria, renal calculi, acidosis andalkalosis. Dialysis.REPRODUCTIVE PHYSIOLOGYPhysiology of male reproduction, hormonal control of spermatogenesis.Physiology of female reproduction, hormonal control of menstrualcycle.Fertilization, pregnancy and childbirth.PRACTICUMStudy of different types of cells and tissues using permanent slides.Preparation of stained temporary slides of cheek epithelial cells.	4 2 1 4
	16 17 18 19 20 21	NDOCRINE, RENAL AND REPRODUCTIVE PHYSIOLOGYENDOCRINE SYSTEMEndocrine glands in man. Hormones and hormonal disorders.Regulation of endocrine function – feedback mechanism.RENAL PHYSIOLOGYFormation of urine. Counter-current multiplier system.Renal disorders – nephritis, haematuria, renal calculi, acidosis and alkalosis. Dialysis.REPRODUCTIVE PHYSIOLOGYPhysiology of male reproduction, hormonal control of spermatogenesis.Physiology of female reproduction, hormonal control of menstrual cycle.Fertilization, pregnancy and childbirth.PRACTICUMStudy of different types of cells and tissues using permanent slides.Preparation of stained temporary slides of cheek epithelial cells.Demonstration of triceps reflex.	4 2 1 4
	16 17 18 19 20 21 22	NDOCRINE, RENAL AND REPRODUCTIVE PHYSIOLOGYENDOCRINE SYSTEMEndocrine glands in man. Hormones and hormonal disorders.Regulation of endocrine function – feedback mechanism.RENAL PHYSIOLOGYFormation of urine. Counter-current multiplier system.Renal disorders – nephritis, haematuria, renal calculi, acidosis andalkalosis. Dialysis.REPRODUCTIVE PHYSIOLOGYPhysiology of male reproduction, hormonal control of spermatogenesis.Physiology of female reproduction, hormonal control of menstrualcycle.Fertilization, pregnancy and childbirth.PRACTICUMStudy of different types of cells and tissues using permanent slides.Preparation of stained temporary slides of cheek epithelial cells.	4 2 1 4
	16 17 18 19 20 21 22	NDOCRINE, RENAL AND REPRODUCTIVE PHYSIOLOGYENDOCRINE SYSTEMEndocrine glands in man. Hormones and hormonal disorders. Regulation of endocrine function – feedback mechanism.RENAL PHYSIOLOGYFormation of urine. Counter-current multiplier system.Renal disorders – nephritis, haematuria, renal calculi, acidosis and alkalosis. Dialysis.REPRODUCTIVE PHYSIOLOGYPhysiology of male reproduction, hormonal control of spermatogenesis. Physiology of female reproduction, hormonal control of menstrual cycle.Fertilization, pregnancy and childbirth.PRACTICUMStudy of different types of cells and tissues using permanent slides. Preparation of stained temporary slides of cheek epithelial cells. Demonstration of triceps reflex.Preparation of stained temporary slides of striated muscle fibres of cockroach.	4 2 1 4
	16 17 18 19 20 21 22 23	NDOCRINE, RENAL AND REPRODUCTIVE PHYSIOLOGYENDOCRINE SYSTEMEndocrine glands in man. Hormones and hormonal disorders. Regulation of endocrine function – feedback mechanism.RENAL PHYSIOLOGYFormation of urine. Counter-current multiplier system.Renal disorders – nephritis, haematuria, renal calculi, acidosis and alkalosis. Dialysis.REPRODUCTIVE PHYSIOLOGYPhysiology of male reproduction, hormonal control of spermatogenesis. Physiology of female reproduction, hormonal control of menstrual cycle.Fertilization, pregnancy and childbirth.PRACTICUMStudy of different types of cells and tissues using permanent slides. Preparation of stained temporary slides of cheek epithelial cells.Demonstration of triceps reflex. Preparation of stained temporary slides of striated muscle fibres of	4 2 1 4

27	Study of functional anatomy & physiology of organ systems using	
	virtual labs/videos	

REFERENCES

- 1. Ganong, W.F. (2019), Review of Medical Physiology, 26th edition. McGraw Hill, New Delhi.
- Guyton, A.C. and Hall, J.E. (1995). Text book of Medical Physiology, 9th edition. W.B. Saunders Co.
- 3. Widmaier, E.P, Raff, H and Strang K.T. (2016). Vander's Human Physiology, 14th edition. Mc Graw Hill, NY.
- 4. Sembulingam, K. (2019). Essentials of Medical Physiology: With Free Review of Medical Physiology. India: Jaypee Brothers Medical Publishers Pvt. Limited.
- 5. Hoar, W.S.(1975). General and Comparative physiology, Prentice Hall.

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Describe the structure of different types of cells and	R, U	6
	tissues in human body as well as its levels of		
	organisation and integration.		
CO-2	Describe how the sense organs, nervous system and	R, U	6
	muscular system function in coordination for the		
	maintenance of equilibrium in accordance with the		
	external environment.		
CO-3	Explain the functioning and interactions of different	R, U	6
	organ systems for the maintenance of a healthy body.		
CO-4	Explain the importance of gut microbiota as well as	R, U	6
	the significance of gut-brain axis in physical and		
	mental health.		
CO-5	Integrate the knowledge of major systems to outline	U, An, E	5, 6
	the interplay between organ systems to maintain		
	biological equilibrium.		
CO-6	Interpret and draw inferences from experiments	An, E, Ap	5, 8
	regarding the physiological functions in health and		
	disease.		

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create Name of the Course: HUMAN PHYSIOLOGY

Credits: 3:1 (Lecture:Practical)

CO	СО	PO	PSO	Cognitive	Knowledge	Lecture (L)/	Practical
No.				Level	Category	Tutorial (T)	(P)
CO-1	Describe the	1	6	R, U	F, C	L	

		1	1				,
	structure of						
	different types						
	of cells and						
	tissues in						
	human body as						
	well as its						
	levels of						
	organisation						
00.0	and integration.	1	6	DU	ГО	т	
CO-2	Describe how	1	6	R, U	F, C	L	
	the sense						
	organs, nervous						
	system and						
	muscular						
	system function						
	in coordination						
	for the						
	maintenance of						
	equilibrium in						
	accordance						
	with the						
	external						
	environment.					_	
CO-3	Explain the	1	6	R, U	F, C	L	
	functioning and						
	interactions of						
	different organ						
	systems for the						
	maintenance of						
	a healthy body.						
CO-4	Explain the	1	6	R, U	F, C	L	
	importance of	*	Ŭ	1., 0	1, 0	-	
	gut microbiota						
	as well as the						
	significance of						
	gut-brain axis						
	in physical and						
	mental health.						
CO-5	Integrate the	1	5,6	R, U	F, C	L	
	knowledge of						
	major systems						
	to outline the						
	interplay						
	between organ						
	systems to						
	maintain						
	biological						
	equilibrium.	1.0	5.0		C D		D
CO-6	Interpret and draw inferences	1,2	5,8	R, U	С, Р		Р
			1	1	1		

from			
experiments			
regarding the			
physiological			
functions in			
health and			
disease.			

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO 1	-	-	-	-	-	3	-	-
CO 2	-	-	-	-	-	3	-	-
CO 3	-	-	-	-	-	3	-	-
CO 4	-	-	-	-	-	3	-	-
CO 5	-	-	-	-	3	3	-	-
CO 6	-	-	-	-	3	-	-	2

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	-	-	-	-	-	-
CO2	3	-	-	-	-	-	-
CO3	3	-	-	-	-	-	-
CO4	3	-	-	-	-	-	-
CO5	3	-	-	-	-	-	-
CO6	3	2	-	-	-	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/discussion/quiz/seminar/presentation
- Project Evaluation
- Internal Exam
- End semester exam

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark
CO 6	\checkmark	\checkmark		

Discipline	Zoology				
Course Code	MIUK6 DSCZOO304.1				
Course Title	DEVELOPMENTA	L BIOLOG	Y		
Type of Course	DSC				
Semester	VI				
Academic	300-399				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours/Week
	4	3	-	2	5
Pre-requisites	Basic knowledge of reproductive biology				
Course	Developmental Biol	logy is the	e discipline	that provi	des in-depth
Summary	knowledge on the	embryonic	and post	embryonic d	levelopmental
	processes. The most	fascinating	aspect of dev	velopmental l	biology that a
	single fertilized egg	can give ri	se to a fully	y developed	multi cellular
	complex organism. T	his course ex	plains the ba	asic principles	and concepts
	underlying the devel	lopmental pr	rocesses at t	the cellular a	nd molecular
	level. Better unders	tanding of	morphogenes	sis are made	possible by
	introduced to model	-		-	-
	Chick to study diffe	• 1	00	U 1	
	morphogenetic move		00	•	
	germ layers and their		1	U	
	the technique of IVF	is needed for	the betterme	ent of mankin	d.

DETAILED SYLLABUS

Module	Unit	Content	Hrs
Ι		INTRODUCTION	4
	1	Historical perspective (brief account), Theories- Preformation, Epigenesis, Recapitulation and Germplasm.	1
	2	Asexual Reproduction: brief account on Parthenogenesis: natural and artificial parthenogenesis, arrhenotoky and thelytoky, obligatory and facultative,.Significance of parthenogenesis.	3
TT		SEXUAL REPRODUCTION	7
II	3	Spermatogenesis and Structure of sperm	2
	4	Oogenesis structure of Graafian follicle and typical egg	3
	5	Types of eggs based on different criteria, Polarity of egg	2

III		FERTILIZATION	19		
	6	Events in Fertilization-Agglutination, sperm penetration, activation of egg, amphimixis.	3		
	7	Physiological and biochemical changes during and after fertilization	3		
	8	Prevention of polyspermy- Primary block to polyspermy, Secondary block to polyspermy.	2		
	9	Cleavage: Types of cleavage - holoblastic and meroblastic; patterns of cleavage – radial, bilateral, spiral, rotational.	3		
	10 Blastulation - introduction, different types of blastula – stereo blastula, coeloblastula, discoblastula, periblastula, blastocyst.				
	11	Gastrulation: brief account of morphogenetic movements – epiboly and emboly (invagination, involution, infiltration, ingression, delamination, convergence, divergence)	2		
	12	Cell differentiation: totipotency, pleuripotency and unipotency of embryonic cells. Determination and differentiation in embryonic development	2		
	13	Gene action in development of Drosophila:- Maternal	2		
		effect genes; Zygotic genes- Segmental genes (gap			
		genes, pair-rule gene and segment polarity gene)			
IV	EN	and Homeotic genes, Hox genes IBRYONIC DEVELOPMENT AND ADVANCEMENT IN	15		
ĨV	Elv	DEVELOPMENTAL BIOLOGY	15		
	14	Frog -cleavage, blastulation, gastrulation organogeny – development of brain, eye, heart; metamorphosis - ecological, morphological and physiological changes and hormonal control	5		
	15	Chick -, gastrulation, study of 24 hrs chick embryo;	2		
	16	Man - implantation, pregnancy, parturition. Placentation in mammals – different types of placenta, functions	2		
	17	Types of embryonic induction –Primary, Secondary and Tertiary Induction (Experiments of Spemann and Mangold)	2		
	18	Assisted Reproductive Technique: IVF, GIFT, ZIFT, TET, ICSI Cloning	2		
	19	Teratology: definition and causes. Prenatal diagnosis	2		
V		PRACTICUM	30		
	20	Study of different types of eggs-Amphioxus, frog, chick, man- based on models/charts.			
	21	Study of blastula- Amphioxus, frog- slide / model			
	22	Study of gastrula – frog-yolk plug stage - slide / model.			
	23	Mounting of 24hrs/48hrs chick blastoderm.			
	24	Study of placenta – any two types.			
	25	Metamorphosis in frog using pictogram			

26	Project report on Drosophila culture/chick embryo development	

Reference:

- 1. Balinsky. B.I. (2004). An Introduction to Embryology. W.B. Saunders & Co.
- Carlson.B.M. (2014) Human Embryology and Developmental Biology, Fifth Edition ISBN: 978-1-4557-2794-0
- 3. Berry, A.K. (2008). An Introduction to Embryology. Emkay Publications.
- 4. Gibbs. (2006). Practical Guide to Developmental Biology. Oxford University Press
- 5. Gilbert. S.F. (2000). Developmental Biology. Sinauer Associates, Inc. Publishers.

Course outcome

No	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Explain the events that lead to formation of a multicellular organism from a single fertilized egg	R,U	3
CO-2	Define the cellular processes of development and the molecular mechanisms underlying these process	R,U	3,6
CO-3	Application of latest techniques like IVF and pre natal diagnosis to be applied for human welfare.	U, AP	5
CO-4	Development of the skill to raise and maintain culture of model system; Drosophila in the laboratory	U, C	3,8
CO-5	Describe the general patterns and sequential developmental stages during embryogeneis	U,R	3

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Developmental Biology Credits: 3:1 (Lecture:Practical)

СО	СО	PO	PSO	Cognitive	Knowledge	Lecture (L)/	Practical
No.				Level	Category	Tutorial (T)	(P)
CO-1	Explain the	1	3	U	F, C	L/T	
	events that lead						
	to formation of						
	a multicellular						
	organism from						
	a single						
	fertilized egg						

CO-2	Define the cellular processes of development and the molecular mechanisms underlying these process	1	3,6	U	F, C	L/T	Р
CO-3	Application of latest techniques like IVF and pre natal diagnosis to be applied for human welfare.	1	5	Ap	F, C	L/T	
CO-4	Development of the skill to raise and maintain culture of model system; Drosophila in the laboratory	1	5	С	F, C, P	L/T	Р
CO-5	Describe the general patterns and sequential developmental stages during embryogeneis.	1	3,5	U	F, C	L/T	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO 1	-	-	-	3	-	-	-	-
CO 2	-	-	3	-	-	2	-	-
CO 3	-	-	-	-	3	-	-	-
CO 4	-	-	-	-	3	-	-	-
CO 5	-	-	3	-	3	-	-	-

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	-	-	-	-	-	-
CO2	3	-	-	-	-	-	-
CO3	3	-	-	-	-	-	-

CO4	3	-	-	-	-	-	-
CO5	3	-	-	-	-	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/discussion/quiz/seminar/presentation
- Project Evaluation
- Internal Exam
- End semester exam

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark	\checkmark	\checkmark
CO 5	\checkmark	\checkmark		\checkmark

Discipline	ZOOLOGY								
Course Code	MIUK6DSCZOO305.1								
Course Title	EVOLUTION, ETH	IOLOGY A	ND ZOOGE	OGRAPHY					
Type of Course	DSC								
Semester	VI								
Academic	300 - 399								
Level									
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours/Week				
	4	3 hours	-	2 hours	5				
Pre-requisites	Basic idea on evoluti	on and anima	al behavior						
Course	This course delves in	to the fundar	nental conce	pts such as the	e origin of life,				
Summary	theories of organic e	volution, and	l the support	ing evidence.	It explores the				
	concept of speciatio	n, its divers	e types and	the underlying	ng causes that				
	propel evolutionary change. Additionally, it elucidates the intricacies of								
	animal behaviour from a scientific perspective, analyzing theories of								
	learning and behavi	-		-					
	0 0 1	0		l formation,					
	investigates the facto	ors influenci	ng animal di	stribution and	d traverses the				
	diverse zoogeographi	ical realms th	at delineate	our planet's bi	odiversity.				

Detailed Syllabus:

Module	Unit	Content	Hrs						
Ι		THEORIES OF ORIGIN OF LIFE AND ORGANIC EVOLUTION	10						
	1	Theories of origin of life. Origin of basic biological molecules, abiotic	2						
		synthesis of organic monomers and polymers, concept of Oparin -							
		Haldane, Miller-Urey Experiments. The RNA world. The First Cell							
	2	Theories of organic evolution: Lamarck's theory, Weisman's germplasm	3						
		theory, Darwin's theory of natural selection. Mutation theory, sexual							
		selection theory, Neo Darwinism							
	3	3 Hardy – Weinberg law and the factors affecting genetic equilibrium 2							
	4	Speciation- sympatric speciation and allopatric speciation. Species 3							
		isolation and isolating mechanisms							
II	GE	COLOGICAL TIME SCALE, PALAEONTOLOGY AND PRIMATE	10						
		EVOLUTION							
	5	Geological time scale- eras, periods and epochs. Major events in	3						
		evolutionary timescale. Mass extinction and its consequences.							
	6	Fossils- fossilization and its significance fossil dating	2						
	7	Stages in Primate Evolution - Prosimii, Anthropoidea and Hominids.	5						
		Major trends in human evolution-Hominid fossils.							
III		ETHOLOGY	18						
	8	Motivation- models of motivation (Lorenz's psychohydraulic model and	3						

		Deutsch's model).	
	9	Learning- types of learning (imprinting, habituation, conditioned reflex,	3
		unconditioned reflex, latent learning, insight learning)	
	10	Neural centres (hypothalamus and limbic system) and mechanisms in	3
		behaviour: drinking, feeding, learning, memory and cognition.	
	11	Hormones and behaviour	3
	12	Sociobiology- social groups –merits and demerits, properties of organized	3
		societies, social groups in mammals, social stress.	
	13	Pheromones and chemical communication; human pheromones	3
IV		ZOOGEOGRAPHY	7
	14	Geographic distribution of animals-cosmopolitan distribution, discontinuous distribution, bipolar distribution and isolated distribution, factors affecting animal distribution; barriers to animal distribution- physical and biological barriers.	3
	15	Zoogeographical Realms: (brief account of each realm mention the areas included, physical features and fauna) Palaearctic region, Australian region, Ethiopian region, Nearctic region, Oriental region and Neotropical region. Biogeographical classification of India- Western Ghats, Eastern Ghats and Himalayas. Insular Fauna: Brief account of oceanic islands and continental islands (with one example each).	4
		PRACTICUM	30
	16	Mathematical problems associated with Hardy- Weinberg equilibrium.	
	17	Identification of types of fossils using pictogram	
	18	Identification of fossil ancestors of man using pictogram	
	19	Experimental setup-Alarm pheromones in ants.	
	20	Study of habituation in Pila	
	21	Maize learning experiments in mice/rats (video demonstration)	
	22	 Study of different zoogeographical realms with fauna: Palaearctic region Australian region Ethiopian region Nearctic region Oriental region Neotropical region. 	

Reference

- 1. Futuyma, D.J.1986. Evolutionary Biology (2nd edn). Sinauer Associates Inc. MA, USA
- 2. Gould, S,J. 2002. The Structure of Evolutionary Theory. Harvard University Press,
- 3. MA, USA
- 4. Hall, B.K and Hallgrimsson, B. 2008. *Strickberger's Evolution* (4th edn). Jones and Bartlett Pub.London, UK
- 5. Campbell.B.G.2009. Human Evolution. Transaction Publishers, NJ, USA

- 6. Alcock, J. (2001): Animal Behaviour- An Evolutionary Approach (7th Ed.) Sinaur Associates, Inc.
- 7. Manning, A. & Dawkins, M.S. (1998). An Introduction to Animal Behaviour. (5th Ed.)
- 8. Cambridge: Cambridge University Press.
- 9. George W. (1962). Animal geography, Heinemann Edl. Books Ltd., London.

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Explain the concept on the origin of life, theories on organic evolution and its evidence.	R, U	3
CO-2	Describe the concept of speciation, types and causes	R, U	1
CO-3	Analyze the science of animal behavior and the concept of learning	An, E	5
CO-4	Examine the factors affecting animal distribution and zoogeographical realm	R, An	2

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course:	Credits: 3:1	(Lecture:]	Practical)

CO No.	СО	POs	PSOs	Cognitive Level	Knowledge Category	Lecture (L)	Practical (P)
1	Explain the concept on the origin of life, theories on organic evolution and its evidence.	1	3	R, U	С	L	Р
2	Describe the concept of speciation, types and causes	1	1	R, U	С	L	
3	Analyze the science of animal behavior and the concept of learning	1,2	5	An, E	F	L	Р
4	Examine the factors affecting animal distribution and the characteristics of various zoogeographical	1	2	R, An	С	L	Р

ZOOLOGY (Syllabus 2024 Admn. onwards)

	realms					
5	Identify different zoogeographical realms	1	2	U	Р	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO 1	-	-	2	-	-	-	-	-
CO 2	1	-	-	-	-	-	-	-
CO 3	-	-		-	1	-	-	-
CO 4	-	-	2	-	-	-	-	-
CO 5	-	1	-	-	-	-	-	-

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	-	-	-	-	-	-
CO2	3	-	-	-	-	-	-
CO3	3	2	-	-	-	-	-
CO4	3	-	-	-	-	-	-
CO5	3	-	-	-	-	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/discussion/quiz/seminar/presentation
- Project Evaluation
- Internal Exam
- End semester exam

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark		\checkmark	\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		

Discipline	ZOOLOGY							
Course Code	MIUK6DSEZOO302.1							
Course Title	IMMUNOLOGY							
Type of Course	DSE							
Semester	VI							
Academic	300 - 399							
Level								
Course Details	Credit	Credit Lecture Tutorial Practical Total						
	per week per week Hours/Week							
	4	3 hours	-	2 hours	5			
Pre-requisites	A fundamental under	standing of b	iological cor	cepts, includi	ng cell			
	structure and function	n, and basic p	principles of p	physiology.				
Course	This course provides		-		-			
Summary	immune system and		•	•				
	diseases. Through lectures, discussions, laboratory exercises, and							
	assignments, students will gain knowledge of the cellular and molecular							
	mechanisms underlying immune responses, immunological techniques							
	used in research and	•						
	of immunotherapy. I	•						
	foundation in immun	ology that pr	repares them	for further stu	idies or careers			
	in immunology							

Detailed Syllabus:

Module	Unit	Content	Hrs						
Ι		COMPONENTS OF IMMUNE SYSTEM	14						
	1	Overview of immune system. Types of immunity, innate and acquired	8						
		immunity; passive and active immunity; humoral and cell-mediated							
		immunity. Cells and organs of immune system - Primary and Secondary							
		lymphoid organs. Immune cells: types, production and functions.							
	2	Antigens, Immunogens, factors affecting immunogenicity, epitopes,	2						
		haptens.							
	3	Immunoglobulins: General Properties, Structure.	4						
		Different classes of immunoglobulins (1gA, 1gD,1gE,1gG and 1gM) and							
		their functions. Mention polyclonal & monoclonal antibodies							
II	IMN	IUNE RESPONSE AND ANTIGEN – ANTIBODY INTERACTIONS	13						
	4	Primary and secondary immune responses: characteristics, stages,	2						
		immune cell activation and memory.							
	5	Antigen – antibody interactions: precipitation, agglutination, complement	2						
		fixation, neutralization, opsonisation.							

	6	Antigen processing and presentation. Role of MHCs.	3
	7	Complement system. Pathways and biological effects of complement	3
		activation.	
	8	Transplantation immunology. Types of grafts. Mechanism of graft	3
		rejection.	
III		DEFECTS OF IMMUNE SYSTEM	10
	9	Immunodeficiency disorders. Congenital and acquired	4
		immunodeficiencies.	
	10	Autoimmunity. Auto immune diseases – systemic and organ specific.	4
	11	Hypersensitivity. Types of hypersensitivity reactions.	2
IV		IMMUNOTHERAPY	8
	12	Vaccines. Types of vaccines - whole organisms, purified	2
		macromolecules, others (mRNA vaccine).	
	13	Monoclonal antibodies. Hybridoma technology. Use of monoclonal	5
		antibodies in immunotherapy.	
	14	Immunomodulatory drugs.	1
		PRACTICUM	30
	15	Observe immune cells (such as lymphocytes, macrophages, neutrophils)	
		using light microscopy. Learn to identify different cell types based on	
		their morphology and understand their functions.	
	16	Total and differential count of WBCs in human blood samples.	
	17	Observation of agglutination of blood cells using antisera and	
		interpretation of antigen – antibody interactions.	
	18	Demonstration of immunological techniques – ELISA, western blot.	

REFERENCES

- 1. Owen, J., Punt, J., & Stranford, S. (2018). Kuby Immunology (8th ed.). WH Freeman.
- 2. Delves, P. J., Martin, S. J., Burton, D. R., & Roitt, I. M. (2016). Roitt's Essential Immunology (13th ed.). Wiley-Blackwell.
- 3. Abbas, A. K., Lichtman, A. H., & Pillai, S. (2014). Basic immunology: Functions and disorders of the immune system. Elsevier.

No.	Upon completion of the course the graduate will be	Cognitive	PSO
	able to	Level	addressed
CO-1	Explain the components of immune system and their	R, U	6
	interactions to ward off pathogens and maintain		
	health.		
CO-2	Compare the different types of immune mechanisms	R, U, An	5,6
	as well as antibodies and interpret their action in		
	providing immunity.		
CO-3	Explain the characteristics and mechanisms of	R, U	6
	immune responses and antigen-antibody interactions.		
CO-4	Explain the basis of altered immunological conditions	U, E, Ap	6,7
	and disorders and how immunotherapies can be used		
	for managing the conditions.		
CO-5	Interpret the types of antigen and antibody present in	U, An, Ap	5,6
	a blood sample based on agglutination reactions.		

Course Outcomes

CO-6	Identify the immune cells based on their morphology	R, U, Ap, E	5,7
	and evaluate their counts in relation to health and		
	diseases.		

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create Name of the Course: IMMUNOLOGY

Credits: 3:1 (Lecture:Practical)

CO	СО	PO	PSO	Cognitive	Knowledge	Lecture (L)/	Practica
No.				Level	Category	Tutorial (T)	l (P)
CO-1	Explain the components of immune system and their interactions to ward off pathogens and maintain health.	1	6	R, U	F, C	L	
CO-2	Compare the different types of immune mechanisms as well as antibodies and interpret their action in providing immunity.	1	5,6	R, U, An	F, C, P	L	
CO-3	Explain the characteristics and mechanisms of immune responses and antigen- antibody interactions.	1	6	R, U	F, C	L	
CO-4	Explain the basis of altered immunological conditions and disorders and how immunotherapi es can be used for managing the conditions.	1	6,7	U, E, Ap	F, C	L	
CO-5	Interpret the types of antigen and antibody	1,6	5,6	U, An, Ap	F, C, P		Р

	present in a blood sample based on agglutination reactions.						
CO-6	Identify the immune cells based on their morphology and evaluate their counts in relation to health and diseases.	1,6	5,7	R, U, Ap, E	F, C, P	L	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO 1	-	-	-	-	-	3	-	-
CO 2	-	-	-	-	3	3	-	-
CO 3	-	-	-	-	-	3	-	-
CO 4	-	_	-	-	-	3	3	-
CO 5	-	-	-	-	3	3	-	-
CO 6	-	-	-	-	3	-	3	-

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	-	-	-	-	-	-
CO2	3	-	-	-	-	-	-
CO3	3	-	-	-	-	-	-
CO4	3	-	-	-	-	-	-
CO5	3	-	-	-	-	2	-
CO6	3	-	-	-	-	2	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/discussion/quiz/seminar/presentation
- Project Evaluation
- Internal Exam
- End semester exam

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		
CO 6	\checkmark	\checkmark		

Mar Ivanios College (Autonomous)

Discipline	ZOOLOGY				
Course Code	MIUK6DSEZOO303.1				
Course Title	BIOMOLECULES				
Type of	DSE				
Course					
Semester	VI				
Academic	300 - 399				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours/Week
	4	3 hours	-	2 hours	5 hours
Pre-requisites	Basic knowledge in o	cell biology			
Course	Biomolecules are	the most e	ssential orga	nic molecules	s, which are
Summary	involved in the m			-	U
	organisms. They ra	0			
	secondary metaboli			•	
	carbohydrates, prote	-			
	enable the learners			-	
	biological systems w		•	-	
	basic knowledge an	•			
	macromolecules (ca	•	- · -		eic acid) and
	the relationship betw	een their stru	acture and fu	nction.	

Module	Unit	Content	Hrs				
Ι	F	PROPERTIES OF WATER, CHEMICAL BONDS, pH AND BUFFERS	6				
	1	Structure and properties of water.	2				
		Importance of water in biological systems.					
		Vater as a universal solvent.					
	2	Гуреs and significance of chemical bonds.					
	3	H and buffers.					
II		CARBOHYDRATES AND LIPIDS					
	4	Carbohydrates: Definition and classification of carbohydrate,	3				
		stereoisomeric forms of carbohydrate, structure, functions and reactions of biologically important carbohydrates.					
	5	Monosaccharide—glucose, fructose, mannose, galactose.	4				
		Disaccharides – sucrose, lactose, maltose, cellobiose.					
	6	Polysaccharides—Storage: starch, glycogen, inulin.	4				
		Structural: hemicelluloses, cellulose, lignin, chitin and					
		peptidoglycans.					
	7	Lipids: Definition, classification and functions of lipids.	4				

		Occurrence, chemistry and biological functions of	
		simple lipids (e.g. triacyclglycerols, wax) compound lipids (e.g.	
		phospholipids, glycolipid) and derived lipids (e.g. cholesterol,	
	8	prostaglandins).	1
III	8	Fatty acids: classification and nomenclature. AMINO ACIDS AND PROTEINS	1 17
111	0		4
	9	Aminoacids: Structure and classification. Properties of amino	4
		acids: pK value and iso-electric point. Reactions of amino acids:	
		(due to - carboxyl group, amino group and side chains); Peptide	
	10	bonds and peptide formation.	-
	10	Proteins: Structural levels of organisation:	4
		a) Primary structure (e.g. insulin); b) Secondary structure: Alpha	
		helix, Beta pleated sheet, Ramachandran angles and	
		Ramachandran plot.	
		c) Tertiary structure (e.g. Myoglobin) d) Quaternary structure (e.g.	
		Haemoglobin)	
		Globular proteins (e.g. Myoglobin, Haemoglobin: biological	
		importance) and Fibrous proteins (e.g. Keratin and Collagen:	
		biological importance).	
	11	Enzymes: Classification (I.U.B. system) and nomenclature of	5
		enzymes.	
		Enzyme kinetics: Energy of activation; Steady state enzyme	
		kinetics: Michaelis-Menten equation. Km value and its	
		significance.	
		Mechanism of action of enzymes: Enzyme specificity - active site;	
		formation of enzyme substrate complex - covalent catalysis, acid-	
		base catalysis, metal ion catalysis, and catalysis by approximation	
		and orientation.	
		Lock and key model & Induced fit model	
	12	Control of enzyme activity:	3
		a) Enzyme inhibition: Reversible inhibition - competitive,	_
		uncompetitive and mixed types. Irreversible inhibition: non-	
		competitive and suicide inhibitions.	
		b) Enzyme regulation: allosteric regulation, covalent modification,	
		feedback or end product inhibition, compartmentalization, effect	
		of regulatory molecules and cofactors.	
	13	Co-enzymes, cofactors, iso-enzymes, ribozymes and abzymes.	1
IV		NUCLEIC ACID, VITAMINS AND MINERALS	6
	14	Nucleic acid: Structure of nucleotides and nucleic acids:	2
	- •	Structural organization of DNA (Watson –Crick model).	
		Bonds and forces found in nucleic acids.	
	15	Types of DNA: A, B, C, Z, triplex and tetraplex DNAs	2
	15	Types of RNA: mRNA, tRNA, rRNA and snRNA	2
		Biological roles of nucleotides and nucleic acids.	
		Biological importance of nucleic acids. 16s rRNA and its	
		significance.	
	16	Vitamins: Fat-soluble and water-soluble vitamins.	2
	10	Minerals: Micro and Macro minerals.	2
		Biological importance of vitamins and minerals, deficiency	
		biological importance of vitalinits and initierals, deficiency	

		symptoms.	
V		PRACTICUM	30
	17	Qualitative analysis of carbohydrates (Fehling's test).	
	18	Determination of blood sugar (O-Toluidine reaction).	
	19	Qualitative analysis of urine for abnormal constituents (Fehling's test, Sulphosalicylic acid test).	
	20	Identification tests for Proteins (Biuret test).	

1. Lehninger's Principles of Biochemistry by David L Nelson; A.L. Lehninger and Michael M. Cox, 7th edition, Macmillan Learning U.K.

2. Biochemistry, The molecular basis of life by Trudy McKEE and James R. McKEE, 7th edition, Oxford University Press.

3. Biochemistry by Donald Voet and Judith G. Voet, 4th edition, John Wiley & Sons, INC.

4. Biochemistry by Jeremy M. Berg and John L. Tymoczko, 8^{th} edition, W.H. Freeman & Company.

No.	Upon completion of the course, the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Acquire an insight into various biomolecules which constitute living organisms.	R, U	5, 6, 7
CO-2	Learn the structure and properties of carbohydrates.	R, U	5, 6, 7
CO-3	Acquire the basic concepts of structural organization and characterization of proteins and importance of enzymes.	R, U	5, 6, 7
CO-4	Learn about structure and properties of lipids.	R, U	5, 6, 7
CO-5	Explain the structure of DNA, RNA and their types.	R, U	5, 6, 7
CO-6	Understand other accessory molecules like vitamins and minerals.	R, U	5, 6, 7
CO-7	Acquaint with principles, technical requirement, scientific understanding of biochemical assays.	U, An, Ap	5, 6, 7

Course Outcomes

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create Biomolecules: Credits: 3:0: 1(Lecture: Tutorial: Practical)

CO No.	СО	РО	PSO	Cognitive Level	Knowledge Category	Lecture (L)/ Tutorial (T)	Practical (P)
1	1	1,5, 6	5, 6,7	R, U	F, C	L/T	
2	2	1,5,6	5,6,7	R, U	F, C	L/T	
3	3	1,5,6	5, 6, 7	R, U	F, C	L/T	

4	4	1,5,6	5,6,7	R, U	F, C	L/T	
5	5	1,5,6	5, 6, 7	R, U	F, C	L/T	
6	6	1,5,6	5, 6, 7	R, U	F,C	L/T	
7	7	1,5,6	4,7,8	U, An, Ap	С, Р		Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO 1	-	-	-	-	3	3	1	
CO 2	-	-	-	-	3	3	1	
CO 3	-	-	-	-	3	3	1	
CO 4	-	-	-	-	3	3	1	
CO 5	-	-	-	-	3	3	1	
CO6	-	-	-	-	3	3	1	
CO7	-	-	-	3	-	-	1	2
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	
CO1	3							
	5	-	-	-	3	3	-	
CO2	3	-	-	-	3	3	-	
CO2 CO3		- - -	-	-			-	_
	3	-	- - -	- - -	3	3	-	
CO3	3	- - - -	- - - -	- - - -	3	3	- - - -	
CO3 CO4	3 3 3	- - - - -	- - - - - -	- - - - -	3 3 3	3 3 3	- - - - -	

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/discussion/quiz/seminar/presentation
- Project Evaluation
- Internal Exam
- End semester exam

	Internal Exam	Assignment	Project evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 6	\checkmark	\checkmark		

Mar Ivanios College (Autonomous)

Discipline	ZOOLOGY					
Course Code	MIUK6SECZOO302	MIUK6SECZOO302.1				
Course Title	ANIMAL CELL CU	JLTURE TE	CHNIQUE	S		
Type of Course	SEC					
Semester	VI					
Academic	300 - 399					
Level						
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours/Week	
	3	2 hours	-	2	4	
Pre-requisites	Those who are interest	sted to pursu	e their future	studies and re	esearch as	
	well as career in life s	science.				
Course	The course provides	theoretical k	knowledge as	s well as prac	ctical skills in	
Summary	animal cell culture to	animal cell culture techniques. Hands-on training in animal cell culture				
	and maintenance will	and maintenance will be provided. Visit to an established animal cell				
	culture facility is ma	andatory for	the course.	Specific ses	sions will be	
	handled by scientists/	faculties with	h expertise in	the field.		

Module	Unit	Content	Hrs
Ι		INTRODUCTION TO CELL CULTURE LABORATORY AND EQUIPMENT	10
	1	Laboratory safety, risk assessment, general safety, Standard Operating Procedures, safety regulations, biosafety levels, safe laboratory practices and fumigation with formaldehyde.	1
	2	Basic equipment (Incubator, microscope, sterilizer, washing up instrument, sterilizing and drying oven, centrifuge, water purification, cell freezing-storage).	1
	3	Expanded equipment (Laminar flow hood, Cell counter, vacuum pump, CO2 incubator, preparation and quality control equipment, temperature recording, bulk culture, pipette aids and automatic pipetting).	3
II	L	ABORATORY PRACTICES AND ASEPTIC TECHNIQUE	10
	5	Aseptic work area, cell culture hood, cell culture hood layout, incubator storage and cryogenic storage.	3
	6	Introduction, sterile work area, good personal hygiene, sterile reagents and media, sterile handling and good aseptic technique.	

ш		BIOLOGICAL CONTAMINATION	5
III	8	Introduction, bacteria, yeasts, molds, viruses, mycoplasma.	
		Cell culture contamination detection, elimination and	2
		troubleshooting, appropriate usage of antibiotics.	
	9	Storage and distribution of animal feed.	3
IV		CELL CULTURE BASICS	5
	10	Cell lines; selecting the appropriate cell line, acquiring cell lines,	
		culture collections- NCCS, ATCC.	1
	11	Preparation culture environment, adherent v/s suspension culture,	2
		media, pH, CO ₂ , température.	
	12	Culturing Techniques: Sub-culturing, freezing, revival of cryo-	1
		preserved cells, seeding of cells into 96-well plate and cell viability	
		assay(MTT).	
V(P)		PRACTICUM	30
	13	Medium preparation.	
	14	Basics steps in cell culture (Cell counting, sub culturing, freezing,	
		thawing).	
	15	Cell viability assays.	
	16	Apoptosis assays.	

- 1. Harrison, M. A., Rae, I. F. (1997). General Techniques of Cell Culture. United Kingdom: Cambridge University Press.
- 2. Animal Cell Culture: A Practical Approach. (2000). United Kingdom: Oxford University Press, UK.
- 3. Capes-Davis, A., Freshney, R. I. (2021). Freshney's Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications. United Kingdom: Wiley.

Course Outcomes

No.	Upon completion of the course the graduate will be	Cognitive	PSO
	able to	Level	addressed
CO-1	Maintain a basic cell culture laboratory aseptically, use and care the basic equipments.	U, Ap	7,8
CO-2	Maintain cell cultures by sub-culturing and cryopreservation.	U, Ap	7,8
CO-3	Carry out experiments using animal cell cultures.	U, Ap	7,8

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Basic laboratory animal practices

Credits: 2:0:1 (Lecture: Tutorial: Practical)

CO No.	СО	РО	PSO	Cognitive Level	Knowledge Category	Lecture (L)/ Tutorial (T)	Practical (P)
1	1	1,2,5,6	7,8	U, An, Ap	С, Р	L/T	

2	2	1,2,5,6	7, 8	U, An, Ap	С, Р	L/T	
3	3	1,2,5,6	7,8	U, An, Ap	С, Р		(P)

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO 1	-	-	-	-	-	-	3	3
CO 2	-	-	-	-	-	-	3	3
CO 3	-	-	-	-	-	-	3	3

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	1	1	-	-	3	3	-
CO2	1	1	-	-	3	3	-
CO3	1	1	-	-	3	3	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/discussion/quiz/seminar/presentation
- Project Evaluation
- Internal Exam
- End semester exam

	Internal Exam	Assignment	Project evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		

SEMESTER – VII

Mar Ivanios College (Autonomous)

Discipline	ZOOLOGY				
Course Code	MIUK7DSCZOO400	0.1			
Course Title	BIOCHEMISTRY				
Type of Course	DSC				
Semester	VII				
Academic	400 - 499				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours/Week
	4	3 hours	-	2 hours	5
Pre-requisites	Sound knowledge in	biology and	chemistry.		
Course	This course introduce	es students to	o metabolism	: the collectio	n of chemical
Summary	processes by which o	cells derive of	energy from	their surround	dings and use
•	this energy to make	the buildin	g blocks of	life. The ma	jor metabolic
	pathways involved	in the syn	thesis and	breakdown	of important
	biological molecules	s are explo	red, along	with the me	echanisms of
	regulating these pa	thways in	the body.	Links betwe	en errors in
	metabolism and huma	an disease ar	e also discuss	sed.	

Module	Unit	Content	Hrs				
Ι		CARBOHYDRATE METABOLISM	10				
	1	Major pathways of glucose utilization: Glycolysis, Pentose Phosphate Pathway (PPP), Glycogenesis.	3				
	2						
	3	Feeder pathways for glycolysis: Glycogenolysis, Gluconeogenesis and Cori cycle.	4				
	4	Hormonal regulation of carbohydrate metabolism.					
II	I LIPID METABOLISM						
	5	Fatty acid metabolism: Beta oxidation, alpha oxidation and omega oxidation of fatty acids.	5				
	6 Biosynthesis of fatty acids, Cholesterol: biosynthesis and regulation Ketone bodies: formation, ketosis and keto acidosis.						
	7	Role of liver in lipid metabolism.	3				
		PROTEIN/ NUCLEIC ACID METABOLISM					
III			15				
	8	Catabolism of amino acids: deamination, transamination and trans- deamination, decarboxylation; catabolism of glucogenic and ketogenic amino acids.	5				

	9	Urea cycle: Formation and disposal of ammonia.	5
	10	Catabolism of purines and pyrimidines.	5
IV		ENERGY METABOLISM	5
	11	High energy bonds and energy rich compounds in muscle - ATP, ADP and PC. Biological oxidation: mitochondrial electron transport chain, oxidative phosphorylation, ATP synthesis, chemiosmotic theory.	5
V(P)		PRACTICUM	30
	12	Determination of the isoelectric pH of the given amino acid by titration method.	
	13	Estimation of DNA/RNA	
	14	Quantitative estimation of glycogen of a tissue	
	15	Quantitative estimation of blood glucose	
	16	Quantitative estimation of protein(tissue/ serum).	
	17	Determination of acid value of the given fat.	
	18	Determination of saponification value of the given fat.	
	19	Estimation of serum cholesterol using a standard protocol	

- 1. David L Nelson, A.L. Lehninger and Michael M. Cox, (2017). Lehninger's Principles of Biochemistry- Macmillan Learning U.K (7th edition).
- 2. Trudy McKEE and James R. McKEE, (2019). Biochemistry, The molecular basis of life- Oxford University Press (7th edition).
- **3.** Donald Voet and Judith G. Voet, (2010). Biochemistry- John Wiley & Sons, INC (4th edition).
- 4. Jeremy M. Berg and John L. Tymoczko, (2023). Biochemistry- W.H. Freeman & Company (8th edition).

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Outline the major pathways in carbohydrate metabolism.	R, U,	5,6,7,8
CO-2	Learn about lipid metabolism and its importance.	U, Ap	5,6,7,8
CO-3	Explore on basic reactions and its concepts in protein and nucleic acid metabolism.	U, Ap	5,6,7,8
CO-4	Understand the physiological importance of metabolism and energy production.	U, AP	5,6,7,8

CO-5	Acquaint with principles, technical requirement, scientific understanding of biochemical assays	U, Ap, An	7,8

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Biochemistry

Credits: 3:0:1 (Lecture: Tutorial: Practical

CO No.	СО	РО	PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutoria l(T)	Practical (P)
1	1	1,5,6	5, 6,7,8	U, An, Ap	F, C	L/T	
2	2	1,5,6	5,6, 7, 8	U, An, Ap	F, C	L/T	
3	3	1,5,6	5, 6, 7,8	U, An, Ap	F, C	L/T	
4	4	1,5,6	5,6,7,8	U, An, Ap	F, C	L/T	
5	5	1,5,6	4, 7, 8	An, Ap	F, P		Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO 1	-	-	-	-	3	3	2	3
CO 2	-	-	-	-	3	3	2	3
CO 3	-	-	-	-	3	3	2	3
CO 4	-	-	-	-	3	3	2	3
CO 5	-	-	-	3	-	-	2	3

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	-	-	-	3	3	-
CO2	3	-	-	-	3	3	-
CO3	3	-	-	-	3	3	-
CO4	3	-	-	-	3	3	-
CO5	-	-	-	-	3	3	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low

2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/discussion/quiz/seminar/presentation
- Project Evaluation
- Internal Exam
- End semester exam

	Internal Exam	Assignment	v	End Semester
			evaluation	Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		

Mar Ivanios College (Autonomous)

Discipline	Zoology							
Course Code	MIUK7DSCZOO401.1							
Course Title	BIOANALYTICAI	L TECHNIQ	UES					
Type of	DSC							
Course								
Semester	VII							
Academic	400 - 499							
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours/Week			
	4	3		2	5			
Pre-requisites	Basic understanding	of physics.						
Course	Bio analytical techr	niques refer	to a set of	methods use	ed to analyze			
Summary	biological samples	. These to	echniques p	olay a cruc	cial role in			
	pharmaceutical resea	arch, clinical	l diagnostics	, and biomed	lical research.			
	Some common b	oio analytic	al techniqu	les include	microscopy,			
	chromatography, sp	pectrometry,	electrophor	resis and ir	nmunoassays.			
	These techniques c	These techniques can be combined or used individually to analyze						
	various aspects of bi	-		-				
	research, diagnosis	, and treat	tment in fi	elds such	as medicine,			
	pharmacology, and b	viotechnology	у.					

Module	Unit	Content	Hrs
Ι		MICROSCOPY AND HISTOLOGICAL TECHNIQUES	15
	1	Microscopy- Principle, history and importance of microscopy in	2
		biology	
	2	Working principle and applications: Bright field, Dark field and	5
		phase contrast microscopy. Inverted microscope, Fluorescence	
		microscope, Laser scan microscope, Confocal microscope, Electron	
		microscope- SEM, TEM	
	3	Histological Techniques: Techniques for preparation of temporary	5
		and permanent slides, whole mounts, smears, squashes and sections.	
		Specimen preparation for TEM, SEM. Shadow casting, freeze	
		fracturing, freeze etching, negative staining.	
	4	Histochemical techniques for detection of proteins, lipids and	3
		carbohydrates	
II		ELECTROPHORESIS	5

	5	Working principle and applications: Native PAGE and SDS-	3
		PAGE. Agarose gel electrophoresis. Gel documentation.	
	6	Immunoelectrophoresis. Isoelectric focusing. Radioimmunoassay.	2
III		CHROMATOGRAPHY AND CENTRIFUGATION	15
	7	Principle and types of chromatography	3
	8	Working principle and applications: Thin layer chromatography,	5
		HPTLC, Column chromatography and ion exchange	
		chromatography.	
	9	Gas chromatography, High performance liquid	3
		chromatography (HPLC)	
	10	Centrifugation: Principle of centrifugation. Basic components and	4
		types of centrifuges. Different types of rotors. Ultracentrifugation -	
		analytical and preparative. Differential and density gradient	
		centrifugation.	
IV		SPECTROSCOPY	10
	11	Working principle and applications: IR spectroscopy, Fluorescent	7
		spectroscopy, Flame emission spectroscopy, Atomic absorption	
		spectroscopy, Nuclear Magnetic- resonance spectroscopy, Mass	
		spectroscopy	
	12	Cell based assay- Flow cytometry	3
V			
	10	PRACTICUM	30
	13	Sketching of biological specimens using a camera lucida.	30
	14	Sketching of biological specimens using a camera lucida. Dissection of radula under stereomicroscope.	30
	14 15	Sketching of biological specimens using a camera lucida.Dissection of radula under stereomicroscope.Demonstration of Fluorescence microscope.	30
	14 15 16	Sketching of biological specimens using a camera lucida.Dissection of radula under stereomicroscope.Demonstration of Fluorescence microscope.Demonstration of inverted microscope.	30
	14 15 16 17	Sketching of biological specimens using a camera lucida.Dissection of radula under stereomicroscope.Demonstration of Fluorescence microscope.Demonstration of inverted microscope.Gel mounting and electrophoresis of DNA sample.	30
	14 15 16 17 18	Sketching of biological specimens using a camera lucida.Dissection of radula under stereomicroscope.Demonstration of Fluorescence microscope.Demonstration of inverted microscope.Gel mounting and electrophoresis of DNA sample.Paper chromatographic separation of amino acids	30
	14 15 16 17	Sketching of biological specimens using a camera lucida.Dissection of radula under stereomicroscope.Demonstration of Fluorescence microscope.Demonstration of inverted microscope.Gel mounting and electrophoresis of DNA sample.Paper chromatographic separation of amino acidsQuantification estimation of Na, K, Ca of the given sample with	30
	14 15 16 17 18 19	Sketching of biological specimens using a camera lucida.Dissection of radula under stereomicroscope.Demonstration of Fluorescence microscope.Demonstration of inverted microscope.Gel mounting and electrophoresis of DNA sample.Paper chromatographic separation of amino acidsQuantification estimation of Na, K, Ca of the given sample with the help of flame photometer/ spectrophotometer	30
	14 15 16 17 18 19 20	Sketching of biological specimens using a camera lucida.Dissection of radula under stereomicroscope.Demonstration of Fluorescence microscope.Demonstration of inverted microscope.Gel mounting and electrophoresis of DNA sample.Paper chromatographic separation of amino acidsQuantification estimation of Na, K, Ca of the given sample with the help of flame photometer/ spectrophotometerHistological prepation of liver,gut and muscle.	30
	14 15 16 17 18 19 20 21	Sketching of biological specimens using a camera lucida.Dissection of radula under stereomicroscope.Demonstration of Fluorescence microscope.Demonstration of inverted microscope.Gel mounting and electrophoresis of DNA sample.Paper chromatographic separation of amino acidsQuantification estimation of Na, K, Ca of the given sample with the help of flame photometer/ spectrophotometerHistological prepation of liver,gut and muscle.Histochemical localization of glycogen and protein	30
	14 15 16 17 18 19 20	Sketching of biological specimens using a camera lucida.Dissection of radula under stereomicroscope.Demonstration of Fluorescence microscope.Demonstration of inverted microscope.Gel mounting and electrophoresis of DNA sample.Paper chromatographic separation of amino acidsQuantification estimation of Na, K, Ca of the given sample with the help of flame photometer/ spectrophotometerHistological prepation of liver,gut and muscle.	30

- 1. Ghatak K.L. 2011. Techniques and Methods in Biology. PHI Learning Pvt. Ltd. New Delhi
- 2. Gupta A. 2009. Instrumentation and Bio-Analytical Techniques. PragatiPrakashan, Meerut.
- 3. Hoope, W. et.al. 1983. Biophysics. Springer Verlag, Berlin.
- 4. Lehninger, A.L.1971. Bioenergetics. W.A. Benjamin, London
- 5. Narayanan, P. 2000. Essentials of Biophysics. New Age International (P) Ltd. Publishers, New Delhi

6.

Course Outcomes

No.	Upon completion of the course, the graduate will	Cognitive	PSO
	be able to	Level	addressed

CO-1	Choose various analytical techniques to deal with biological samples.	R, U	4
CO-2	Experiment with various analytical techniques in research.	R, Ap	4,5
CO-3	Explain the basic principles of analytical techniques.	R, U	3
CO-4	Analyse research problems with appropriate techniques.	R, An	6
CO-5	Create research projects using multiple analytical techniques.	R, C	8

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Bioanalytical Techniques

Credits: 3:1 (Lecture:Practical)

CO No.	СО	РО	PSO	Cognitiv e Level	Knowledge Category	Lecture (L)/ Tutorial (T)	Practical (P)
CO-1	Choose various analytical techniques to deal with biological samples	2,6	4	U	F, C	L/T	
CO-2	Experiment with various analytical techniques in research.	5,6	4,5	Ар	F, C, P	L/T	Р
CO-3	Explain the basic principles of analytical techniques.	1	3	U	F, C	L/T	
CO-4	Analyse research problems with appropriate techniques.	2,6	6	An	F, C, P	L/T	P
CO-5	Create research projects using multiple analytical techniques.	2,6	8	С	C,p	L/T	P

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO 1	-	-	-	3	-	-	-	-
CO 2	-	-	-	3	3	-	-	-
CO 3	-	-	2	-	-	-	-	-
CO 4	-	-	-	-	-	3	-	-
CO 5	-	-	-	-	-	-	-	3

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	-	3	-	-	-	3	-
CO2	-	-	-	-	2	3	-
CO3	3	-	-	-	-	-	-
CO4	-	3	-	-	-	3	-
CO5	-	3	-	-	-	3	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/discussion/quiz/seminar/presentation
- Project Evaluation
- Internal Exam
- End semester exam

	Internal Exam	Assignment	Report Submission	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark	\checkmark	\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

SEMESTER – VIII

Mar Ivanios College (Autonomous)

Discipline	Zoology					
Course Code	MIUK8DSEZOO400.1					
Course Title	GENOMICS AND PROTEOMICS					
Type of Course	DSE					
Semester	VIII					
Academic	400 - 499					
Level						
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours/Week	
	4	3 hours	-	2	5	
Pre-requisites	Knowledge in bio inf	ormatics, Mo	olecular biolo	gy and geneti	c engineering	
Course	Genomics and protect	omics are tw	o of the new	west biologic	al disciplines,	
Summary	and research in the	se areas ha	s been driv	en by the a	pplication of	
	technology to biology	y. Two critic	al technologi	es driving the	ese disciplines	
	are DNA sequencir	ng and mas	s spectrome	etry. This co	ourse imparts	
	advanced knowledge			• • •		
	genome and proteon		•			
	sequencing technolog	•	•		-	
	for quantifying gene	-	-			
	understand various	U			U	
	expression. Addition	• •				
	organization, compa			ion of the	genomic and	
	proteomic techniques	in various fi	elds.			

Module	Unit	Content	Hrs					
Ι		INTRODUCTION TO BIOINFORMATICS	7					
	1	Database: Biological data, Bioinformatics databases, Classification of	2					
		databases, Nucleic acid/Protein sequence, and structural databases,						
		File formats.						
	2	Sequence alignment: Pairwise (BLAST, FASTA), Multiple	3					
		(ClustalW, Clustal Omega),Local, and global.						
		Sequence analysis: Basic protein and nucleic acid sequence analysis,						
		Phylogenetic analysis.						
	3	Structure prediction: secondary and tertiary structure of proteins $-Ab$	2					
		<i>initio</i> and Homology modelling, Ramachandran plot, 3D structure						
		visualization, and comparison.						
II		GENOMICS	13					

	4	Genetics to genomics, Genome Sequence Acquisition and Analysis.	3
		Application of genomics.	
		Comparative genomics, Functional genomics, Structural genomics,	
		Clinical genomics, Pharmacogenomics and metagenomics.	
		Biomedical Genome Research—Genomic sequences to make new	
	5	vaccines, and new types of antibiotics. Next Generation Sequencing: Introduction, History, and Evolution of	7
	5	sequencing, Types, First, second, and third generation sequencing.	/
		NGS platforms: Roche 454, ABI SOLiD, Ion torrent, Illumina,	
		PacBio, Oxford nanopore.	
		Introduction to NGS technologies: DNA-seq, whole genome	
		sequencing, RNA-seq, ChIP-seq, Hi-C, Metagenomics, Single-cell	
		sequencing. Applications of NGS in transcriptome analysis, whole	
		genome sequencing, and exome sequencing. Bioethics of sequencing	
		– ownership of DNA sequence, storage, and security.	
	6	Clinical genomics: Variation in the human genome – SNPs, SNVs,	3
		TRDs, CNVs, and chromosomal aberrations. Known examples of	
		SNPs that cause diseases, Gene therapy and gene editing. Genomics in	
		human and healthcare. Ethical consequences of genomic variations	
		and clinical genomics.	
III		EXPRESSION DATA ANALYSIS	10
111	7	Basic introduction to - EST, SAGE/CAGE, Microarray, RNAseq;	4
	/	control, treated, replicates & its importance, Differential expression	-
		analysis.	
	8	Affymetrix protocol and data generation, the spotted microarray	3
		technology, cDNA and oligo spotted arrays, microarray vs RNAseq	
		technology, eDIVA and ongo spotted arrays, interoarray vs KivAseq	
		for gene expression profiling.	
	9	for gene expression profiling. Application of Microarray and RNA seq: Biomedical applications,	3
	9	for gene expression profiling. Application of Microarray and RNA seq: Biomedical applications, Plant genomics and industry.	
IV		for gene expression profiling. Application of Microarray and RNA seq: Biomedical applications, Plant genomics and industry. PROTEOMICS	15
IV	9 10	for gene expression profiling. Application of Microarray and RNA seq: Biomedical applications, Plant genomics and industry. PROTEOMICS Introduction to proteome, Genomics to proteomics.	
IV		for gene expression profiling. Application of Microarray and RNA seq: Biomedical applications, Plant genomics and industry. PROTEOMICS Introduction to proteome, Genomics to proteomics. Protein structure: Primary, secondary, tertiary, and quaternary	15
IV		for gene expression profiling. Application of Microarray and RNA seq: Biomedical applications, Plant genomics and industry. PROTEOMICS Introduction to proteome, Genomics to proteomics. Protein structure: Primary, secondary, tertiary, and quaternary structures, Proteins, and Peptides. Protein folding, Protein stability,	15
IV		for gene expression profiling. Application of Microarray and RNA seq: Biomedical applications, Plant genomics and industry. PROTEOMICS Introduction to proteome, Genomics to proteomics. Protein structure: Primary, secondary, tertiary, and quaternary structures, Proteins, and Peptides. Protein folding, Protein stability, Protein denaturation, and Physiochemical properties of protein,	15
IV	10	for gene expression profiling. Application of Microarray and RNA seq: Biomedical applications, Plant genomics and industry. PROTEOMICS Introduction to proteome, Genomics to proteomics. Protein structure: Primary, secondary, tertiary, and quaternary structures, Proteins, and Peptides. Protein folding, Protein stability, Protein denaturation, and Physiochemical properties of protein, Protein -Protein interaction.	15 4
IV		for gene expression profiling. Application of Microarray and RNA seq: Biomedical applications, Plant genomics and industry. PROTEOMICS Introduction to proteome, Genomics to proteomics. Protein structure: Primary, secondary, tertiary, and quaternary structures, Proteins, and Peptides. Protein folding, Protein stability, Protein denaturation, and Physiochemical properties of protein, Protein -Protein interaction. Protein isolation and separation: 2-D gel electrophoresis, SDS page,	15
IV	10	for gene expression profiling. Application of Microarray and RNA seq: Biomedical applications, Plant genomics and industry. PROTEOMICS Introduction to proteome, Genomics to proteomics. Protein structure: Primary, secondary, tertiary, and quaternary structures, Proteins, and Peptides. Protein folding, Protein stability, Protein denaturation, and Physiochemical properties of protein, Protein -Protein interaction. Protein isolation and separation: 2-D gel electrophoresis, SDS page, Native page, Chromatography techniques.	15 4
IV	10	for gene expression profiling. Application of Microarray and RNA seq: Biomedical applications, Plant genomics and industry. PROTEOMICS Introduction to proteome, Genomics to proteomics. Protein structure: Primary, secondary, tertiary, and quaternary structures, Proteins, and Peptides. Protein folding, Protein stability, Protein denaturation, and Physiochemical properties of protein, Protein -Protein interaction. Protein isolation and separation: 2-D gel electrophoresis, SDS page, Native page, Chromatography techniques. Complete proteome analysis: Mass spectrometry (LC-MS).	15 4
IV	10	for gene expression profiling. Application of Microarray and RNA seq: Biomedical applications, Plant genomics and industry. PROTEOMICS Introduction to proteome, Genomics to proteomics. Protein structure: Primary, secondary, tertiary, and quaternary structures, Proteins, and Peptides. Protein folding, Protein stability, Protein denaturation, and Physiochemical properties of protein, Protein -Protein interaction. Protein isolation and separation: 2-D gel electrophoresis, SDS page, Native page, Chromatography techniques. Complete proteome analysis: Mass spectrometry (LC-MS). Protein Identification: ELISA and western blot.	15 4
IV	10	for gene expression profiling. Application of Microarray and RNA seq: Biomedical applications, Plant genomics and industry. PROTEOMICS Introduction to proteome, Genomics to proteomics. Protein structure: Primary, secondary, tertiary, and quaternary structures, Proteins, and Peptides. Protein folding, Protein stability, Protein denaturation, and Physiochemical properties of protein, Protein -Protein interaction. Protein isolation and separation: 2-D gel electrophoresis, SDS page, Native page, Chromatography techniques. Complete proteome analysis: Mass spectrometry (LC-MS). Protein Identification: ELISA and western blot. Protein structure determination: X-ray Crystallography, NMR	15 4
IV	10	for gene expression profiling. Application of Microarray and RNA seq: Biomedical applications, Plant genomics and industry. PROTEOMICS Introduction to proteome, Genomics to proteomics. Protein structure: Primary, secondary, tertiary, and quaternary structures, Proteins, and Peptides. Protein folding, Protein stability, Protein denaturation, and Physiochemical properties of protein, Protein -Protein interaction. Protein isolation and separation: 2-D gel electrophoresis, SDS page, Native page, Chromatography techniques. Complete proteome analysis: Mass spectrometry (LC-MS). Protein Identification: ELISA and western blot.	15 4
IV	10	for gene expression profiling. Application of Microarray and RNA seq: Biomedical applications, Plant genomics and industry. PROTEOMICS Introduction to proteome, Genomics to proteomics. Protein structure: Primary, secondary, tertiary, and quaternary structures, Proteins, and Peptides. Protein folding, Protein stability, Protein denaturation, and Physiochemical properties of protein, Protein -Protein interaction. Protein isolation and separation: 2-D gel electrophoresis, SDS page, Native page, Chromatography techniques. Complete proteome analysis: Mass spectrometry (LC-MS). Protein Identification: ELISA and western blot. Protein structure determination: X-ray Crystallography, NMR spectroscopy, and cryo-electron microscopy.	15 4 7
IV	10	for gene expression profiling. Application of Microarray and RNA seq: Biomedical applications, Plant genomics and industry. PROTEOMICS Introduction to proteome, Genomics to proteomics. Protein structure: Primary, secondary, tertiary, and quaternary structures, Proteins, and Peptides. Protein folding, Protein stability, Protein denaturation, and Physiochemical properties of protein, Protein -Protein interaction. Protein isolation and separation: 2-D gel electrophoresis, SDS page, Native page, Chromatography techniques. Complete proteome analysis: Mass spectrometry (LC-MS). Protein Identification: ELISA and western blot. Protein structure determination: X-ray Crystallography, NMR spectroscopy, and cryo-electron microscopy. Mining of protein databases, Protein sequence to function,	15 4 7
IV	10	for gene expression profiling. Application of Microarray and RNA seq: Biomedical applications, Plant genomics and industry. PROTEOMICS Introduction to proteome, Genomics to proteomics. Protein structure: Primary, secondary, tertiary, and quaternary structures, Proteins, and Peptides. Protein folding, Protein stability, Protein denaturation, and Physiochemical properties of protein, Protein -Protein interaction. Protein isolation and separation: 2-D gel electrophoresis, SDS page, Native page, Chromatography techniques. Complete proteome analysis: Mass spectrometry (LC-MS). Protein Identification: ELISA and western blot. Protein structure determination: X-ray Crystallography, NMR spectroscopy, and cryo-electron microscopy. Mining of protein databases, Protein sequence to function, Application of proteomics, Industrial application, Proteomics in	15 4 7
	10 10 11 12 13	for gene expression profiling. Application of Microarray and RNA seq: Biomedical applications, Plant genomics and industry. PROTEOMICS Introduction to proteome, Genomics to proteomics. Protein structure: Primary, secondary, tertiary, and quaternary structures, Proteins, and Peptides. Protein folding, Protein stability, Protein denaturation, and Physiochemical properties of protein, Protein -Protein interaction. Protein isolation and separation: 2-D gel electrophoresis, SDS page, Native page, Chromatography techniques. Complete proteome analysis: Mass spectrometry (LC-MS). Protein Identification: ELISA and western blot. Protein structure determination: X-ray Crystallography, NMR spectroscopy, and cryo-electron microscopy. Mining of protein databases, Protein sequence to function, Application of proteomics, Industrial application, Proteomics in disease diagnosis and drug discovery, plant genetics and breeding. PRACTICUM NCBI - Sequence Databases & Tools	15 4 7 4
	10	for gene expression profiling. Application of Microarray and RNA seq: Biomedical applications, Plant genomics and industry. PROTEOMICS Introduction to proteome, Genomics to proteomics. Protein structure: Primary, secondary, tertiary, and quaternary structures, Proteins, and Peptides. Protein folding, Protein stability, Protein denaturation, and Physiochemical properties of protein, Protein -Protein interaction. Protein isolation and separation: 2-D gel electrophoresis, SDS page, Native page, Chromatography techniques. Complete proteome analysis: Mass spectrometry (LC-MS). Protein Identification: ELISA and western blot. Protein structure determination: X-ray Crystallography, NMR spectroscopy, and cryo-electron microscopy. Mining of protein databases, Protein sequence to function, Application of proteomics, Industrial application, Proteomics in disease diagnosis and drug discovery, plant genetics and breeding. PRACTICUM	15 4 7 4

16	BLAST, FASTA, Gene Prediction	
17	Structure Databases & Visualization	
18	Protein Function Prediction, Protein Structure Prediction, Proteome Analysis	

- 1. Voet D, Voet JG & Pratt CW, (2016). Fundamentals of Biochemistry: Life at the Molecular Level- Wiley (5th Edition).
- 2. Brown TA, (2023). Genomes- Garland Science (5th Edition)
- 3. Campbell AM & Heyer LJ, (2007). Discovering Genomics, Proteomics and Bioinformatics- Benjamin Cummings (2nd Edition).
- 4. Primrose S & Twyman R, (2006). Principles of Gene Manipulation and Genomics-Blackwell (7th Edition)
- 5. Glick BR & Patten CL, (2017). Molecular Biotechnology: Principles and Applications of Recombinant DNA- Wiley (5th Edition)

Course Outcomes

No.	Upon completion of the course, the graduate will	Cognitive	PSO
	be able to	Level	addressed
CO-1	Provide students with an overview of the fundamental	R, U, Ap	5,6,7,8
	technological concepts of genomics, and proteomics		
	methods .		
CO-2	Genome sequencing, various types of sequencing	U, An, Ap	5,6,7,8
	technologies and sequencing approaches.		
CO-3	Understand the significance of various expression	U, Ap, An	5,6,7,8
	analysis tools and its uses in various research fields.		
CO-4	Understand various methods and techniques of	U, Ap, An	5,6,7,8
	proteome analysis, and its applications.		
CO-5	Acquire hands on experience in various genomic and	Ap	7,8
	proteomic tools.		

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Genomics and proteomics

Credits: 3:0:1 (Lecture: Tutorial: Practical)

CO	CO	PO	PSO	Cognitive	Knowledge	Lecture (L)/	Practical
No.				Level	Category	Tutorial (T)	(P)
1	1	1,2,5,6	5, 6,7,8	U, An, Ap	С, Р	L/T	
2	2	1,2,5,6	5,6, 7, 8	U, An, Ap	С, Р	L/T	
3	3	1,2,5,6	5, 6, 7,8	U, An, Ap	C,P	L/T	
4	4	1,2,5,6	5,6, 7,8	U, An, Ap	С, Р	L/T	
5	5	1,2,5,6	5,6,7,8	An, Ap	Р		Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO 1	-	-	-	-	3	3	2	3

CO 2	-	-	-	-	3	3	2	3
CO 3	-	-	-	-	3	3	2	3
CO 4	-	-	-	-	3	3	2	3
CO 5					3	3	2	3

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	2	-	-	3	3	-
CO2	3	2	-	-	3	3	-
CO3	3	2	-	-	3	3	-
CO4	3	2	-	-	3	3	-
CO5	3	2	-	-			

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/discussion/quiz/seminar/presentation
- Project Evaluation
- Internal Exam
- End semester exam

	Internal Exam	Assignment	Project evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		

Mar Ivanios College (Autonomous)

Discipline	ZOOLOGY						
Course Code	MIUK8DSEZOO401	MIUK8DSEZOO401.1					
Course Title	BIOLOGY OF CAN	ICER					
Type of Course	DSE	DSE					
Semester	VIII	VIII					
Academic	400 - 499						
Level							
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours/Week		
	4	3 hours	-	2 hours	5		
Pre-requisites	Sound understanding	Sound understanding in Cell Biology, Molecular Biology.					
Course Summary	The course aims to provide students with a comprehensive insight into the molecular mechanisms underlying cancer development and into cancer treatment. Among the topics covered are tumor viruses, oncogenes, tumor suppressor genes, multistep tumorigenesis, cancer stem cells, tumor heterogeneity, cancer invasion, metastasis, precision medicine and drug development.						

Detailed Syllabus:

Module	Unit	Content	Hrs			
Ι		FUNDAMENTALS OF CANCER	7			
	1	Introduction to cancer.	2			
	2	Benign and Malignant tumours.	2			
	3	Cancer epidemiology.	3			
II		ETIOLOGY OF CANCER	8			
	4	Viruses and cancer (RNA and DNA viruses).	3			
	5	Cancer susceptibility syndromes, inflammation and	2			
		Cancer.				
	6	Chemical & physical carcinogens, carcinogenesis, types	3			
		of carcinogenesis, diet and cancer.				
II		MASTER GUARDIANS AND EXECUTIONERS				
	7	Cellular Oncogenes, tumor suppressor genes, signaling.	5			
	8	Cell cycle regulation, programmed cell death,	3			
		autophagy, senescence, telomeres.				
	9	Gene Regulation and Epigenetics in Cancer	2			
	10	Genetic Integrity and Tumourigenesis: Cell immortalization,	5			
		Multi-Step Tumorigenesis, Maintenance of Genetic Integrity.				
	11	Invasion and Metastasis: Biology of Angiogenesis, Invasion	5			

ZOOLOGY (Syllabus 2024 Admn. onwards)

		and Metastasis. Models for metastasis, Cancer stem cells	
IV	CAN	CER PHENOTYPES AND THERAPEUTIC APPROACHES	10
	12	Tumor heterogeneity.	8
		Screen for small molecule inhibitors.	
		Efficacy studies.	
		Radiotherapy, Chemotherapy, Surgery and Immunotherapy.	
	13	Aging and Cancer Risk.	2
V(P)		PRACTICUM	30
	14	Cell Viability assays (MTT).	
	15	Apoptosis Assays (Annexin V/PI staining).	
	16	Cell Migration Assays (Scratch wound).	
	17	Cell cycle analysis.	
	18	Expression analysis (RT-PCR)	

- 1. Robert A. Weinberg, (2023). The Biology of Cancer-W.W. Norton.
- 2. Robin Hesketh, (2013). Introduction to Cancer Biology- Cambridge University Press.
- 3. Raymond W. Ruddon, (2007). Cancer Biology- Oxford University Press, USA.
- 4. The American Cancer Society, (2018). The American Cancer Society's Principles of Oncology Prevention to Survivorship-Wiley.
- 5. Kurt S. Zänker, Thomas Dittmar, (2016). Role of Cancer Stem Cells in Cancer Biology and Therapy-CRC Press.

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Familiarize the student with the concepts that serve the foundation cancer as a genetic disease.	R, U, Ap	5,6,7,8
CO-2	Build the foundation to provide a comprehensive summary of the major signalling pathways that affect tumour development.	U, Ap, An	5,6,7,8
CO-3	Understand the cellular and molecular mechanisms involved in the transformation of normal cell into malignant cells, the invasiveness of cancer cells into host tissues, and the metastatic spread of cancer cells in the host organism.	U, Ap, An	5,6,7,8
CO-4	Learn about the most common types of cancer and symptoms that are responsible for diagnosing and treating patients with cancer.	U, Ap, An	5,6,7,8
CO-5	Learn various techniques involved in drug screening.	Ap, An	7,8

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Biology of Cancer

Credits: 3:0:1 (Lecture: Tutorial: Practical)

COCOPOPSOCognitiveKnowledge	Lecture (L)	Practica
-----------------------------	-------------	----------

No.				Level	Category	/Tutorial (T)	l (P)
1	1	1,2,5,6	5, 6,7,8	U, An, Ap	С, Р	L/T	
2	2	1,2,5,6	5,6,7, 8	U, An, Ap	С, Р	L/T	
3	3	1,2,5,6	5,6,7,8	U, An, Ap	C,P	L/T	
4	4	1,2,5,6	5,6, 7,8	U, An, Ap	C, P	L/T	
5	5	1,2,5,6	4, 7,8	An, Ap	Р		Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO 1	-	-	-	-	3	3	2	3
CO 2	-	-	-	-	3	3	2	3
CO 3	-	-	-	-	3	3	2	3
CO 4	-	-	-	-	3	3	2	3
CO 5	-	-	-	3	1	1	3	3

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	2	-	-	3	3	-
CO2	3	2	-	-	3	3	-
CO3	3	2	-	-	3	3	-
CO4	3	2	-	-	3	3	-
CO5	-	2	-	-			

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignments
- Internal Exam
- Final Exam

	Internal Exam	Assignment	End Semester Examinations
<u> </u>			
CO 1	\checkmark	\checkmark	\checkmark
CO 2	\checkmark	\checkmark	\checkmark
CO 3	\checkmark	\checkmark	\checkmark
CO 4	\checkmark	\checkmark	\checkmark
CO 5	\checkmark	\checkmark	

Mar Ivanios College (Autonomous)

Discipline	ZOOLOGY							
Course Code	MIUK8DSEZOO402.1							
Course Title	TUMOUR IMMUNOLOGY AND MICROENVIRONMENT							
Type of Course	DSE							
Semester	VIII							
Academic	400 - 499							
Level								
Course Details	Credit Lecture Tutorial Practical Total							
	per week per week Hours/Week							
	4	4 hours	-		4			
Pre-requisites	Sound knowledge in	molecular bi	ology.					
Course	This course is desig	gned to prov	vide students	s an understa	unding of the			
Summary	interplay between tu	mours and t	he immune	system, as w	ell as current			
	therapies that use th	e immune s	ystem in the	e setting of o	ncology. The			
	course will be broken up into four modules. The topics will cover basic							
	immunology and tumor biology, will address the interplay between the							
	•	immune system and tumors, and finally discuss current immunological						
	therapies. At the cond		· •	-				
	how the immune sy	ystem functi	ons, how ir	nmune syste	m links with			
	tumour progression.							

Module	Unit	Content	Hrs					
Ι		Fundamentals of Tumor Immunology	10					
	1	Role of human immune system on cancer	2					
	2	Mechanisms of the Immune Response to Cancer	2					
	3	Adaptive immune response to cancer cells						
	4	Role of gene rearrangement in the Immune Response						
	5	Immunosurveillance						
II	Tumor Microenvironment							
	6	Immune cells in the tumor microenvironment	4					
	7	Interactions between the tumor and infiltrating leukocytes	5					
	8	The role of tumor cells in their local environment	5					
	9	Inflammation and Cancer						
	10	Immunomodulatory molecules of the immune system						
III		Mechanisms of Tumor Evasion	10					

	11	Introduction- Escaping the Immune Response	3					
	12	Changes in Tumor Cells	3					
	13	Changes in Cell Mediated Immune Response in Cancer						
IV		Cancer Immunotherapy						
	14	Cancer immunotherapy- Introduction, Types	3					
	15	Cancer Vaccines	3					
	16	Monoclonal antibody therapy of cancer						
	17	Radioimmunotherapy	3					
	18	Interferon therapy	3					
	19	Adoptive cellular therapy for the treatment of cancer	2					
	20	Checkpoint blockade and combinatorial immunotherapies	2					
	21	Challenges and opportunities in immunotherapy	1					

- 1. Robert D. Schreiber (2024). Cancer Immunology Research- American Association for Cancer Research
- 2. Xianda Zhao and Subree Subramanian (2021). Cancer Immunology- MDPI Books
- **3.** Lisa H. Butterfield, Howard L. Kaufman, Francesco M. Marincola (2021). Cancer Immunotherapy Principles and Practice- SITC

Course Outcomes

No.	Upon completion of the course the graduate will	Cognitive	PSO
	be able to	Level	addressed
CO-1	Understand the significance of immunology in the	U, Ap	5,6,7,8
	context of cancer.		
CO-2	Learn about interaction between various cellular	U, Ap	5,6,7,8
	components with tumour cells.		
CO-3	Various mechanisms involved in successful evasion	U, Ap	5,6,7,8
	of tumour cells.		
CO-4	Understand the various therapeutic approaches	U, AP	5,6,7,8
	involved immunotherapy.		

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Tumour immunology and Microenvironment

Credits: 4:0:0 (Lecture: Tutorial: Practical

CO No.	CO	РО	PSO	Cognitive Level	Knowledge Category	Lecture (L)/	Practical (P)
110.				Level	Category	Tutorial (T)	(1)
1	1	1,2,5,6	5, 6,7,8	U,An, Ap	F, C	L/T	
2	2	1,2,5,6	5,6, 7, 8	U, An, Ap	F, C	L/T	
3	3	1,2,5,6	5, 6, 7,8	U, An, Ap	F, C	L/T	
4	4	1,2,5,6	5,6, 7,8	U, An, Ap	F, C	L/T	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO 1	-	-	-	-	3	3	2	3
CO 2	-	-	-	-	3	3	2	3
CO 3	-	-	-	-	3	3	2	3
CO 4	_	-	_	-	3	3	2	3

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	2	-	-	3	3	-
CO2	3	2	-	-	3	3	-
CO3	3	2	-	-	3	3	-
CO4	3	2	-	-	3	3	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/discussion/quiz/seminar/presentation
- Project Evaluation
- Internal Exam
- End semester exam

	Internal Exam	Assignment	Project evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark

MAR IVANIOS COLLEGE (AUTONOMOUS), THIRUVANANTHAPURAM BOARD OF STUDIES IN ZOOLOGY, 2023 – 2026

No	Name	Designation
1.	Dr. MEERA GEORGE	Assistant Professor & Head
	(Chairperson)	Dept. of Zoology, Mar Ivanios College,
		Thiruvananthapuram
2.	Dr. G. PRASAD (University	Professor & Head
	Nominee)	Department of Zoology, University of
		Kerala
3.	Dr. K. G. MANJU	Professor, Dept. of Zoology, Mar Ivanios
		College, Thiruvananthapuram
4.	Dr. SUBOJ BABYKUTTY	Assistant Professor, Dept. of Zoology,
		Mar Ivanios College, Thiruvananthapuram
5.	Dr SUSAN KURIAN	Assistant Professor, Dept. of Zoology,
		Mar Ivanios College, Thiruvananthapuram
6.	Dr. LIJA L RAJU	Assistant Professor, Dept. of Zoology,
		Mar Ivanios College, Thiruvananthapuram
7.	Dr. ANUPRIYA SAMUEL	Assistant Professor, Dept. of Zoology,
		Mar Ivanios College, Thiruvananthapuram
8.	Dr. SNEHA CHANDRAN B K	Assistant Professor, Dept. of Zoology,
		Mar Ivanios College, Thiruvananthapuram
9.	Prof. Dr. SAJEEVAN T.P	Professor in Marine Biology,
		Department of Marine Biology,
		Microbiology and Biochemistry, Lakeside
		Campus, Cochin University of Science
10.	Dr. R. HARIKUMARAN NAIR	Professor, School of Biosciences
		Mahatma Gandhi University Kottayam,
		Kerala
11.	Dr. F. G. BENNO PEREIRA	Assistant Professor Department of
		Zoology University of Kerala
		Thiruvananthapuram
12.	Dr. MADHUSOODANAN U K	Associate Professor Department of
		Biochemistry Sree Chitra Tirunal Institute
		for Medical Sciences and Technology
		(SCTIMST) Thiruvananthapuram
13.	Dr. RENJITH P. NAIR	Scientist C
		Department of Applied Biology Division
		of Thrombosis Research
		Sree Chitra Tirunal Institute for Medical
		Sciences and Technology (SCTIMST)
		Thiruvananthapuram

14.	Mr. JAIDEEP KUMAR	Aquaculture consultant in Bapatla District,
		Andhra Pradesh.
		Aquaculture Outlook, Flat No. A3, Plot
		No. 1 Third Floor, Nahar Mathura
		Apartments, Sri Aadhi Varagha Puri,
		Thiruvidandhai, Chengalpattu District
		Chennai – 603112