MAR IVANIOS COLLEGE(AUTONOMOUS)

Affiliated to the University of Kerala, Thiruvananthapuram Kerala

SCHEME AND SYLLABUS FOR THE FOUR YEAR UNDERGRADUATE PROGRAMME (FYUGP)

Courses in COMPUTER SCIENCE for MACHINE LEARNING (Aided)

(With effect from 2024 Admissions)

Approved by the Board of Studies in Computer Science

	CONTENTS					
Sl. No.	Content Title	Page				
1.	Preamble	3				
2.	Graduation Attributes and Programme Outcomes (POs)	4				
3.	Course and Credit Structure	8				
4.	Course Participation/Attendance	9				
5.	Assessment and Evaluation	9				
6.	Mark Distribution Table	10				
7.	Letter Grades and Grade Point	10				
8.	Computation of SGPA and CGPA	11				
9.	List of Courses	13				
	SEMESTER I					
10.	Data Structures and Algorithms	14				
11.	Essentials of Digital Technology	19				
	SEMESTER II					
12.	Introduction To AI	24				
13.	Philosophy of Computer Science	29				
	SEMESTER III					
14.	Introduction to Machine Learning	34				
	SEMESTER IV					
15.	Python programming	39				
	SEMESTER V					
16.	Reinforcement Learning	43				
	SEMESTER VI					
17.	Deep Learning	49				

PREAMBLE

National Education Policy (NEP 2020) envisions 'higher education as playing an extremely important role in promoting human as well as societal wellbeing and in developing India as envisioned in its Constitution - a democratic, just, socially conscious, cultured, and humane nation upholding liberty, equality, fraternity, and justice for all' (Section 9.1). NEP also expects higher education 'to develop good, thoughtful, wellrounded, and creative individuals, enabling an individual to study one or more specialized areas of interest at a deep level, and also develop character, ethical and Constitutional values, intellectual curiosity, scientific temper, creativity, spirit of service, and 21st century capabilities across a range of disciplines including sciences, social sciences, arts, humanities, languages, as well as professional, technical, and vocational subjects' (Section 9.1.1). Hence, more than the creation of greater opportunities for individual employment, higher education represents the key to more vibrant, socially engaged, cooperative communities and a happier, cohesive, cultured, productive, innovative, progressive, and prosperous nation. (Section 9.1.3). NEP also identifies some of the major problems currently faced by the higher education system in India (Section 9.2) and envisions a complete overhaul and re-energizing of the higher education system to overcome these challenges and thereby deliver high-quality higher education, with equity and inclusion (Section 9.3). One of the major changes which the policy proposes is moving towards a more multidisciplinary undergraduate education (Section 9.3(b)) which develops all capacities of human beings -intellectual, aesthetic, social, physical, emotional, and moral in an integrated manner (Section 11.3). In order to achieve this in its full potential, NEP visions the adjusting of the structure and lengths of degree programmes accordingly. "The undergraduate degree will be of either 3 or 4-year duration, with multiple exit options within this period, with appropriate certifications, e.g., a certificate after completing 1 year in a discipline or field including vocational and professional areas, or a diploma after 2 years of study, or a Bachelor's degree after a 3year programme. The 4-year multidisciplinary Bachelor's programme, however, shall be the preferred option since it allows the opportunity to experience the full range of holistic and multidisciplinary education in addition to a focus on the chosen major and minors as per the choices of the student." (Section 11.9)

In accordance with the NEP 2020, the UGC formulated a new student-centric "Curriculum and Credit Framework for Undergraduate Programmes (CCFUP)" incorporating a flexible choice-based credit system, multidisciplinary approach, and multiple entry and exit options and establishing three Broad Pathways,

(a) 3-year UG Degree,

(b) 4-year UG Degree (Honours), and

(c) 4-year UG Degree (Honours) with Research)

Accordingly, the Kerala Higher Education Reforms Commission 2022, headed by Prof Shyam B. Menon, has recommended a comprehensive reform in the undergraduate curriculum with the adoption of the 4-year undergraduate Programmes, which will bring undergraduate education in Kerala at par with the universities abroad. Consequently, Kerala State Curriculum Committee for Higher Education 2023 has been constituted, with Dr Suresh Das as Chairman, and they have proposed a model Kerala State Higher Education Curriculum framework for undergraduate education.

The University of Kerala has decided to introduce the Four Year Under Graduate Programmes (FYUGP) from the academic year 2024-2025 onwards in its teaching departments and all affiliated colleges, and has issued many draft documents and conducted college level awareness programmes about the same. Mar Ivanios College, by virtue of its autonomy status, conferred in 2014 and extended in 2022, vide University Grants Commission (Conferment of Autonomous Status Upon Colleges and Measures for Maintenance of Standards in Autonomous Colleges) Regulations, 2023, has the power to review existing courses/programmes and, restructure, redesign and prescribe its own courses/programmes of study and syllabi and to formulate new courses/programmes within the nomenclature specified by UGC as per the Specification of Degrees 2014 as amended from time to time. Accordingly, the Board of Studies in Computer Science of Mar Ivanios College (Autonomous) proposed the implementation of the FYUGP scheme with effect from 2024 admission onwards and prepared the scheme and syllabi through many of the meetings and discussions. The Academic Council of the college which met on 30th April gave discussed the proposal and syllabi in detail and approved the same to be implemented from 2024 admission onwards, subject to the final directions of the University of Kerala.

The salient features of the syllabus prepared and presented by the Board of Studies include the following:

- The curriculum is designed based on Outcome Based Education (OBE) approach.
- The curriculum follows Choice-Based Credit System (CBCS): This system allows students to select courses from a prescribed list. A specified number of credits must be earned to award the degree
- The curriculum follows the basic framework, course wise/programme-wise minimum/maximum credits set by the University of Kerala for FYUGP and abides by the basic mandatory principles of Four Year Under Graduate Programmes (UoK-FYUGP) Regulations, 2024.
- The curriculum focuses on employability as per the requirement of the industry.

Graduate Attributes and Programme Outcomes (POs):

The National Higher Education Qualification Framework (NHEQF) envisages that students on completion of a programme of study must possess and demonstrate the expected graduate profile/attributes acquired through one or more modes of learning. The graduate profile/attributes indicate the quality and feature or characteristics of the graduate of a programme of study, including learning outcomes relating to the disciplinary area(s) relating to the chosen field(s) of learning and generic learning outcomes that are expected to be acquired by a graduate on completion of the programme(s) of study. The graduate profile/attributes include capabilities that help widen the current knowledge base and skills, gain and apply new knowledge and skills, undertake future studies independently, perform well in a chosen career, and play a constructive role as a responsible citizen in the society. The graduate profile/attributes are acquired incrementally and describe a set of competencies that are transferable beyond the study of a particular subject/disciplinary area and programme contexts in which they have been developed. Graduate profile/attributes are fostered through meaningful learning experiences made available through the curriculum and learning experience, the total college/university experience, and a process of critical and reflective thinking. Mar Ivanios College (Autonomous) is fully committed to ensuring the attainment of the necessary graduation attributes by the students. The college has clearly defined its raison de'tre, the philosophy of its existence, through the Motto "Truth Shall Liberate You" (Veritas Vos Liberabit) which refers to the ultimate enlightenment which can emerge only at the intersection of sharp intellect, sound physique, strong mind, staunch ethics, and profound spirituality. This is further made explicit through its Vision, Mission and Goals and the same expect all students who graduate from the college to:

• Have inculcated "the values of truth and charity for the protection and promotion

of human dignity and of a cultural heritage, through teaching, research, and extension activities dedicated to society";

- Be co-creators of a vibrant academic community known for its innovation, intellectual rigour and social commitment;
- Be "intellectually trained, morally upright, socially committed, spiritually inspired and ecologically conscious young men and women who would be dedicated to working for the good of society, the nation and the world";
- Have acquired "global competencies and skills";
- Have inculcated a sense of harmony, equality and fraternity among youth, transcending religious, linguistic, regional or sectional diversities; and
- Have developed "scientific temper, humanism and the spirit of inquiry and reform".

Programme Outcomes are the expected student attributes achieved by a student after the student completes the FYUGP from any of the streams/pathways.

The Programme Outcomes (POs) for the FYUGP programmes across all streams and pathways, based on the above core philosophy, and in consonance with the National Higher Education Qualifications Framework (NHEQF) are given below:

By the end of the Four-Year Under-Graduate Programme, students will:

	· · · · · · · · · · · · · · · · · · ·							
PO 1	Demonstrate the acquisition of all necessary knowledge and skills within							
	their disciplinary/ multi-disciplinary areas of learning. These include the							
	acquisition of:							
	• comprehensive knowledge and coherent understanding of their							
	chosen disciplinary/ interdisciplinary areas of study, their linkages							
	with related fields, and the awareness of current trends in their							
	chosen area of study;							
	• essential knowledge for skilled work in chosen field(s), including self-							
	employment and entrepreneurship skills;							
	• proficiency in specialized areas within chosen fields of study,							
	encompassing diverse practical skills applicable to different situations							
	within those fields;							
	• the ability to apply learned knowledge to novel situations, solve							
	problems, and relate concepts to real-world scenarios rather than just							
	memorizing curriculum content.							
PO 2	Acquire problem-solving, critical thinking, analytical reasoning skills and							
	demonstrate creativity in their thought processes by demonstrating the ability							
	to:							
	• solve different kinds of problems in familiar and non-familiar contexts							
	both within and outside their disciplinary/ multidisciplinary areas of							
	learning;							
	• apply analytic thought to a body of knowledge, including the analysis							
	and evaluation of policies, and practices, as well as evidence, arguments,							
	claims, and beliefs;							
	• analyse and synthesize data from a variety of sources and draw valid							
	conclusions and support them with evidence and examples.							
	• the ability to plan, execute and report the results of an experiment or							
	investigation;							
	• adhere to scientific temper and ethics in their thought process;							
	• adopt innovative, imaginative, lateral thinking, interpersonal skills and							
	emotional intelligence; and							

	incubate entrepreneurial and start-up ideas.
PO 3	Develop a profound environmental dedication by fostering ecological
	awareness and engaging in actions that promote sustainable development by
	achieving the ability to
	 recognize environmental and sustainability issues, and participate in
	actions to promote sustainable development as well as mitigate the effects
	of environmental degradation, climate change, and pollution;
	 contribute to effective waste management, conservation of biological
	diversity, management of biological resources and biodiversity, forest and
	wildlife conservation, sustainable development and living, and the
	preservation of life in all forms.
	 participate in community-engaged services/ developmental activities and
	thus exemplify the ideals of community engagement and service learning
	and deep social commitment.
PO 4	Accomplish perfect communication, teamwork, and leadership skills,
	particularly in academic and professional settings, while demonstrating
	nuance and attention to etiquette in all communicative contexts. This will
	enable them to:
	• listen carefully, and read texts and research documents, and present
	complex information with clarity and precision to different audiences,
	• express inoughts and ideas and communicate effectively inrough speech
	and writing using appropriate media;
	• communicate using language which is respectful of gender and minority
	• act together as a group or a team in the interests of a common cause and
	• act together as a group of a team in the interests of a common cause and working efficiently as a member of a team:
	• inspire the team with a vision to achieve a stated goal, and use
	management skills to guide the team in the right direction.
PO5	Acquire the necessary skills, including 'learning to learn' skills, and foster
	innovative ideas to improve competence and employability, keeping pace with
	the evolving global landscape and technological advancements by
	demonstrating the ability to:
	• pursue learning activities throughout life, through self-paced and self-
	directed learning aimed at personal development, meeting economic,
	social, and cultural objectives, and adapting to changing trades and
	demands of the workplace, including adapting to the changes in work
	processes in the context of the fourth industrial revolution, through
	knowledge/ skill development/reskilling;
	• work independently, identify appropriate resources required for further
	learning;
	• acquire organizational and time management skills to set self-defined goals
	and targets with timelines;
	• be a proactive life-long learner.
	• use IC1 in a variety of learning and work situations;
	• access, evaluate, and use a variety of relevant information sources, and use
	appropriate software for analysis of data;
	 navigate cyberspaces by following appropriate ethical principles and cyber origination
	cuyucuc.
	• use cutting edge AI tools with equal commitment to efficiency and ethics.

	• think 'out of the box' and generate solutions to complex problems in
	unfamiliar contexts;
DOC	
PO6	Develop research-related skills including the ability to conceptualize research hypotheses/projects and adopt suitable tools and methodologies for analysis
	with.
	• a keen sense of observation, inquiry, and capability for asking relevant/
	appropriate research questions;
	• the ability to problematize, synthesize, and articulate issues and design research proposals;
	• the ability to define problems, formulate appropriate and relevant
	research questions, formulate hypotheses, test hypotheses using
	quantitative and qualitative data, establish hypotheses, make inferences
	based on the analysis and interpretation of data, and predict cause-and
	effect relationships;
	• the capacity to develop appropriate methodology and tools for data collection:
	 the appropriate use of statistical and other analytical tools and techniques:
	 the ability to plan, execute and report the results of an experiment or
	investigation;
	• the ability to acquire the understanding of basic research ethics and skills
	in practicing/doing ethics in the field/ in personal research work,
	regardless of the funding authority or the field of study
PO7	Assimilate a sound value system, a sense of autonomy, multicultural
	competence, social commitment, and the spirit of inclusivity and empathy by imbibing the spirit and the belietic othes of the 'Multi Dimensional Ivanian'
	(MDI) approach. This will enable them to:
	• embrace and practice constitutional, humanistic, ethical, and moral values
	in life, including universal human values of integrity, truth, righteous
	conduct, peace, love, nonviolence, scientific temper, citizenship values;
	• identify ethical issues related to work, follow ethical practices and be
	objective, unbiased, and truthful actions in all aspects of work, including
	avoiding unethical behaviour such as fabrication, falsification or
	misrepresentation of data, or committing plagiarism, and adhering to
	• evercise responsibility and demonstrate accountability in applying
	knowledge and/or skills in work and/or learning contexts appropriate for
	the level of the qualification, including ensuring safety and security at
	workplaces;
	• practice responsible global citizenship required for responding to
	contemporary global challenges, enabling learners to become aware of and
	understand global issues and to become active promoters of more peaceful,
	tolerant, inclusive, secure, and sustainable societies;
	• enectively engage in a multicultural group/society and interact respectfully with diverse groups:
	 identify with or understand the perspective experiences or points of view
	and emotions of another individual or group.
	 demonstrate gender sensitivity and adopt a gender-neutral approach. as
	also empathy for the less advantaged and the differently-abled including

those with learning disabilities;
• demonstrate proficiency in arts/ sports/ games, physical, mental and
emotional fitness, entrepreneurial /organizational /pubic
speaking/environmental/ community-oriented areas by actively
participating in the wide range of co-curricular activities that are available
to the students of Mar Ivanios College.

Course and Credit Structure of FYUGP

The pathway preferably followed by the department will be Major with Minor or Major with multiple disciplines of study.

Sem	DSC (4 Cr)	DSE (4 Cr)	AEC (3 Cr)	SEC (3Cr)	MDC (3Cr)	VAC (3Cr)	Internship (credit-2)/ Project/ Additional Courses (credit-12)	Total courses	Total credits
I	A-1 B-1 C-1		AEC (Eng)- 1 AEC(OL)-2		MDC-1			6	21
Π	A-2 B-2 C-2		AEC (Eng)- 3 AEC(OL)-4		MDC-2			6	21
III	A-3 B-3 C-3	DSE A -1			MDC (Kerala Studies)-3	VAC-1		6	22
IV	A-4 A-5	DSE A- 2		SEC-1		VAC-2 VAC-3	Internship	6	21
V	A-6 A-7 A-8	DSE -3 DSE -4		SEC-2				6	23
VI	A-9 A-10 A-11	DSE -5 DSE -6		SEC-3				6	23
Total	A (11) B (3) C (3)	6	4	3	3	3	1*	36	133
EXI	EXIT OPTION AVAILABLE AND STUDENTS WILL BE AWARDED UG DEGREE WITH MAJOR IN A								
VII	A-12 A-13 B/C-4 B/C-5 B/C-6	DSE -7						6	24
VIII	MOOC courses A -14, A -15						Research Project/ Internship /Project or 03 courses -	2+1**/ 3***	20

12Cr

1*+1**/3***

44+1* + 1**/3*** 177

3

The Course and Credit Structure of FYUGP is given below:

A – Major Discipline

A (15) B (3) C (3) B/<u>C(3)</u>

Total

B/C-Minor/Multiple discipline

7

* - Mandatory Internship at the end of Semester 4

4

3

3

** - Research Project/ Internship /Project as part of Honours with Research

- *** Additional courses of 4 credits each.
- Cr Credits
 - Research group project for students exiting after UG 3 years: Students who propose to exit after 3 Year UG programme can do a group project with an extra two credits to obtain research experience in discipline-specific areas of the program. The BoS can decide the number of students for the group and the evaluation criteria.
 - Students will be able to take other pathways permissible under University of Kerala Four Year Under Graduate Programmes (UoK-FYUGP) Regulations, 2024, subject to the availability of courses/ faculty/infrastructure of the college.
 - The Board of Studies shall prepare and publish a list of online courses at different levels before the commencement of classes in the respective semester offered in various online educational platforms recognised by the academic council of the college, which can be opted by the students for acquiring additional credits.

Course Participation/Attendance-

- 1. A student shall be permitted to register for the end-semester evaluation of a specific course to acquire the credits only if the student has completed 75% of the prescribed classroom activities in physical, online, or blended modes, as stipulated by the BoS, including any makeup activities as specified by the faculty of that particular course.
- 2. The reasons/cases of permissible authorised leave shall be specified by the college, with the approval of the Academic Council, ratified by the Governing Body.
- 3. The condonation facility shall be availed as per the existing University/college norms.

Assessment and Evaluation

- 1. The assessment of a course shall combine a Continuous Comprehensive Assessment (CCA) and an End Semester Evaluation (ESE).
- 2. For courses without practical/lab modules, 30% weightage shall be given for CCA and the remaining 70% of the weight shall be for the ESE.
- 3. CCA will have two sub-components: Formative Assessment (FA) and Summative Assessment (SA).
- 4. The CCA subcomponents will be given marks as per the following proportions:

•	Discipline specific summative assessment	- 15% of the total
•	Course attendance	- 5 % of the total.
•	Discipline specific formative assessment	- 10% of the total.

- 5. The details of summative and formative assessment criteria, including that of attendance, will be specified by each course coordinator at the beginning of the semester, with the approval of the respective Head of the Department/BoS Chairperson and the Principal, and will be published on the college website.
- 6. For courses with practical/lab modules, 40% weightage shall be given for CCA and the remaining 60% of the weight shall be for the ESE.

- 5 % of the total.

7. In such cases specified in the item above, the CCA subcomponents will be given marks as per the following proportions:

•	Discipline specific summative assessment	- 10% of the total
---	--	--------------------

- Course attendance
 - Discipline specific formative assessment 15% of the total.
- Summative Assessment (Practical Record, Practical test, skill, etc). 10% of the total.
- 8. The Course Coordinator shall be responsible for evaluating all the components of CCA for the course in question. Any grievances regarding the same shall be submitted to the Course Coordinator within 5 days of the publication of the same on the department notice board or official class group. If the grievance is not settled at the Course Coordinator level, the student is free to appeal to the Head of the Department, within the next 3 days, who will discuss the same in the Department Level Monitoring Committee (DLMC). If still needed, students can further appeal to the College Level Monitoring Committee (ULMC) or in essential situations the University Level Monitoring Committee (ULMC) in a time period as specified by these bodies.
- 9. Regarding evaluation, one credit will be evaluated for 20 marks in a semester; thus, a 4-credit course will be evaluated for 80 marks, and 3-credit courses for 60 marks. However, any changes to this if brought by the University will be followed.
- 10. The duration of the end semester examination of a course with 4 credits will be 2 hours and the same for a course with 3 credits may be 1.5 hours/2 hours.

Course	Cr	edit	Ma	arks	Lecture		Practical			
	Lectur	Practica	Lectur	Practica	CCA	(30%)	ESE	CCA	(40%)	ESE
	е	1	е	1	SA (500/	FA (500/	(70%	SA (500/	FA (500/	(60%
					(50%)	(50%))	(50%)	(50%))
	4	0	80	0	12	12	56	0	0	0
	3	1	60	20	9	9	42	4	4	12
4	2	2	40	40	6	6	28	8	8	24
credit	1	3	20	60	3	3	14	12	12	36
course	0	4	0	80	0	0	0	16	16	48
S	G 114									
	Credits		Marks		Lecture		Practical			
	Lectur	Practica	Lectur	Practica	CCA (3	30%)	ESE	CCA (4	0%)	ESE
3	e	1	e	1	SA	FA	(70%	SA	FA	(60%
credit					(50%	(50%)	(50%	(50%)
course))))	
s	3	0	60	0	9	9	42	0	0	0
	2	1	40	20	6	6	28	4	4	12
	1	2	20	40	3	3	14	8	8	24
	0	3	0	60	0	0	0	12	12	36

Mark Distribution Table

Letter Grades and Grade Point

1. A mark system is followed to evaluate each question. For each course in the semester, letter grades and grade points are introduced in a 10-point indirect grading system as per the guidelines given below.

- 2. The Semester Grade Point Average (SGPA) is computed from the grades to measure the student's performance in a given semester. The SGPA is based on the current term's grades, while the Cumulative Grade Point Average (CGPA) is based on the grades in all courses taken after joining the programme of study.
- 3. The weighted grade point will be mentioned in the student's final grade cards, issued by the college, based on the marks obtained.

Letter Grade	Grade Point	Percentage of marks (X)	Class
		(CCA + ESE together)	
O (Outstanding)	10	<i>X</i> ≥ 95%	FIRST CLASS
A+ (Excellent)	9	$85\% \le X < 95\%$	WITH
A (Very Good)	8	$75\% \le X < 85\%$	DISTINCTION
B+ (Good)	7	$65\% \le X < 75\%$	
B (Above	6	$55\% \le X < 65\%$	FIRST CLASS
Average)			
C (Average)	5	$45\% \le X < 55\%$	SECOND CLASS
P (Pass)*	4	$35\% \le X < 45\%$	THIRD CLASS
F (Fail)	0	X< 35%	FAIL
Ab (Absent)	0		FAIL

4. The grades and grade points will be given as per the following format:

- For a course PASS, separate minimum of 35% is needed for CCA and ESE.
- Less than 35% in either ESE or CCA is FAIL.

Computation of SGPA and CGPA

SGPA (Semester Grade Point Average) and CGPA (cumulative Grade Point Average) will be computed as follows:

1.

$$S_j = \frac{\sum (C_{ij} \times G_{ij})}{\sum C_{ij}}$$

where S_i is the SGPA in the jthsemester,

 C_{ij} is the number of credits for the ith course in the jth semester, and

 G_{ij} is the the grade point scored by the student in the ith course in the ithsemester.

2. The CGPA is also calculated in the same manner considering all the courses undergone by a student over all the semesters of a programme. That is,

$$CGPA = \frac{\sum (C_i \times S_i)}{\sum C_i}$$

where S_i is the SGPA in the i^{th} semester and $\sum C_i$ is the total number of credits in the i^{th} semester

- The SGPA and CGPA shall be rounded to 2 decimal points and reported in the 3. transcripts
- 4. **Requirement for the successful completion of a Semester**: SGPA of 4 or above and a PASS in all the courses, that is, minimum total of 35% mark in each course (CCA + ESE), with a separate minimum of 35% mark for both CCA and

ESE. Appropriate and permissible rules of rounding off numbers may be adopted as per decisions of the Academic Council.

Chairman BoS Computer Science Mar Ivanios College (Autonomous) Thiruvananthapuram

10-05-2024

Course Code	Course Title	Course Category	Credits	Hour distributio per week		ion
				L	Т	P
SEM	ESTER I Academ	ic Level 10	0-199			
MIUK1DSCCSA101.1	Data Structures and Algorithms	DSC	4	3	-	2
MIUK1MDCCSC100.1	Essentials of Digital Technology	MDC	3	3	-	-
SEMESTER II Academic Level 100-199						
MIUK2DSCCSA151.1	Introduction To AI	DSC	4	3	-	2
MIUK2MDCCSC150.1	Philosophy of Computer Science	MDC	3	3	-	-
SEM	ESTER III Acaden	nic Level 200)-299			_
MIUK3DSCCSA201.1	Introduction to Machine Learning	DSE	4	3	-	2
SEME	STER IV Acaden	nic Level 20)0-299			
MIUK4DSECSA251.1	Python Programming	DSE	4	3	-	2
SEMI	ESTER V Academ	nic Level 30	0-399			
MIUK5DSECSA301.1	Reinforcement Learning	DSE	4	3	-	2
SEME	STER VI Acaden	nic Level 30)0-399			
MIUK6DSECSA351.1	Deep Learning	DSE	4	3	-	2

List of Courses

Mar Ivanios College (Autonomous)

Discipline	COMPUTER SCIENCE						
Course Code	MIUK1DSCCSA1	MIUK1DSCCSA101.1					
Course Title	Data Structures an	nd Algorith	ms				
Type of	DSC						
Course							
Semester	Ι	Ι					
Academic	100-199						
Level							
Course	Credit	Lecture	Tutorial	Practical	Total		
Details		per week	per week	per week	Hours/Week		
	4	3 hours	-	2 hours	5		
Pre-requisites	Basic understanding	g of program	nming in C				
Course	The goa	al of this c	ourse is to	give studen	ts a thorough		
Summary	understanding of basic data structures, which are crucial elements of						
	computer science.	computer science. It provides a strong foundation to students in design					
	and analysis of com	puter algori	thms.				

Detailed Syllabus:

Module	Unit	Content	Hrs	CO
Ι		Introduction	9	1
	1	Basic Terminology, Classification of Data		
		Structures, Operations on Data Structures,		
		Abstract Data Type, Algorithms, Different		
		Approaches to Designing an Algorithm,		
		Control Structures Used in Algorithms,		
		Time and Space Complexity, Big O		
		Notation		
	2	Searching - linear search and Binary Search		
II		Linear Data Structures	9 2	
	3	Stack - Stack ADT, Operations on Stack,		
		Applications of Stack, Infix to postfix		
		conversion, evaluation of expression.		
	4	Queue - Queue ADT, Operations on Queue,		
		Circular Queue, Applications of Queue		
	5	Linked Lists - Concept of static versus		
		dynamic data structures, operations, types of		
		linked lists, comparison between arrays and		
		linked lists.		
III		Non Linear Data Structures	9	2,4
	6	Trees - Basic Terminology, Binary Trees,		

		Representation of Binary Trees, Traversal, Types of Binary Trees.		
	7	Graphs - Graph Terminology, Representation of Graphs, Traversal of a Graph, Spanning Trees		
IV	(Fraph Algorithms and Techniques	9	3,5
	8	Greedy Strategy: Knapsack Problem, Minimal Spanning Tree Algorithms- Prim's and Kruskal's Algorithm,		
	9	Dynamic Programming: Principle of Optimal Substructure, All Pairs shortest path problem, Travelling Salesman Problem, Bellman-Ford Algorithm Backtracking: Control Abstraction, N- Queens problem, Sum of Subsets Problem		
V	Com	plexity theory and sorting algorithms	9	2
	10	Complexity Theory: Class P and NP, Polynomial time reductions, Class NP Hard and NPComplete, Example Problems- Vertex Cover problem, Clique Problem. Sorting algorithms: Merge sort, quick sort		
Text	Books,	Books:		
Books	Articles,	1. Reema Thareja, Data Structures Using	g C 3rd Ed	ition,
and Materials	Readings, Software.	Oxford University Press. – Unit 1.		
	Websites,	2. Thomas H. Cormen, et al., "Introduction	on to Algo	rithms",
	Tutorials	Prentice Hall, 3rd Edition (2010)		
		3. Ellis Horowitz, Sartaj Sahni, Sanguthe	var Rajase	ekaran,
		"Fundamentals of Computer Algorithm	ns", Orien	t
		Longman, Universities Press, 2nd Edit	ion (2008))
		Websites:		
		1. https://www.geeksforgeeks.org/learn-data-salgorithms-dsa-tutorial/	structures-	and-

Lab Exercises:

- 1. Implementation of linear search algorithm.
- 2. Utilizing binary search algorithm to search for elements in a sorted array.
- 3. Implementing basic stack operations such as push, pop, and peek.
- 4. Evaluating arithmetic expressions using a stack data structure.
- 5. Converting infix expressions to postfix notation using stack operations.
- 6. Implementing queue operations like enqueue and dequeue.
- 7. Implementation of circular queue data structure.
- 8. Manipulating linked lists, including insertion, deletion, and traversal.
- 9. Traversing trees, such as in-order, pre-order, and post-order traversal.
- 10. Traversing graphs, including depth-first and breadth-first traversal algorithms.
- 11. Implementing quick sort and merge sort algorithms.

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Builds the ability to analyze and implement fundamental algorithms and perform searching and sorting.	An, c	PSO-2,4,5
CO-2	Apply linear and non-linear data structures to problem- solving and Describe the fundamental concepts of Computational Complexity	U, A	PSO-3
CO-3	Explain the concepts of Greedy Strategy and Dynamic Programming to use it in solving real world problems.	U, A	PSO-3
CO-4	Gain a deep understanding of tree and graph data structures, including their properties, definitions, and classifications.	U, A	PSO-4
CO-5	Develop problem-solving skills by applying graph algorithms to solve complex problems, such as finding the shortest path in a graph	An	PSO-5

Course Outcomes

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

Name of the Course: Credits: 4:0:0 (Lecture: Tutorial: Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutoria l (T)	Practical (P)
1	CO1	PSO2,	An, C	Р	L	
2	CO2	PSO2,3, 4	U, Ap	С	L	Р
3	CO3	PSO2,3, 5	U, An	С	L	
4	CO4	PSO2,4, 5	U	С	L	
5	CO5	PSO2, PSO5	An, Ap	Р	L	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO 1		3				
CO 2		2	3	1		
CO 3		2	1		3	
CO 4		1		3	2	
CO 5		2			3	

Mapping of COs with POs:

	P 0 1	P 0 2	P 0 3	P 0 4	P 0 5	P 0 6	P 0 7
C 0 1	3	2	-	-	2	2	-
C O 2	3	2	-	-	2	2	-
C 0 3	3	3	-	-	2	2	-
C O 4	3	2	-	-	2	2	-
C 0 5	3	3	-	-	3	3	-

Correlation Levels:

Lev el	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark			\checkmark
CO 6	\checkmark	\checkmark		\checkmark

Mar Ivanios College (Autonomous)

Discipline	COMP	COMPUTER SCIENCE				
Course Code	MIUK	MIUK1MDCCSC100.1				
Course Title	ESSEN	TIALS OF D	DIGITAL TEC	HNOLOGY		
Type of Course	MDC					
Semester	1					
Academic Level	1					
Course Details	Credit	Lecture per	Tutorial	Practical	Total	
		week	per week	per week	Hours/Week	
	3	3 hours	-	-	3 hours	
Pre-requisites	Basic o	computer skill	ls, critical thinl	king, and curic	osity are key! No	
	prior ex	xpertise neede	d, just a desire	to explore the	exciting world of	
	digital	technology.				
Course	This co	ourse explore	s advanced top	oics in Informa	tion Technology,	
Summary	coverin	g data mana	agement, socia	l informatics,	IT applications,	
	specific areas like bioinformatics and geoinformatics, futuristic IT					
	such as artificial intelligence, and social impacts. Understand IT					
	strategi	strategies like disaster recovery, cloud computing, and green				
	comput	ing. Gain ins	ights into the o	digital economy	y, communication	
	models	, business gov	ernance, and va	rious informati	on systems.	

Detailed Syllabus:

Module	Unit	Content	Hrs	CO
Ι	Digita	al Knowledge Management and Social	9	
		Informatics		
	1	Knowledge Skills: Data, Types of Data,		CO1
		Information and Knowledge, Knowledge		
		management, Internet as a knowledge	4 hrs	
		repository, Open access initiatives, IPR		
		copyright and patents, Software licence		
		agreement.		
	2	Social Informatics: Digital Society,		
		Digital Divide, Social networks, IT- New		
		threats, Cyber Security, Harsh realities,	5 hrs	

		Guidelines for proper usage, E-Waste,		
		Green computing, Free software Debate.		
		IT Applications	9	CO2
	3	IT Applications: E-Governance, Overview	4 hrs	
II		of IT applications, IT for disabled.		
		Specific areas: Bio-Informatics		
		(computational biology and bio-		
	4	informatics) Scope, importance and	5 hrs	
		applications), Immuno-informatics, Geo-		
		informatics (Applications, GIS, Remote		
		sensing, GPS, Web mapping)		
III]	Futuristic IT and Social Impacts	9	
	5	Futuristic IT: Artificial Intelligence,		CO3
		Virtual reality, Expert systems, DNA	6 hrs	
		barcoding, DNA fingerprinting,		
		Biocomputing, Biometrics.		
	6	Social impacts of IT: Introduction,		
		Privacy, security and integrity of	3 hrs	
		information, IPR, Career in IT		
	IT ir	the Digital Economy and Strategies	9	
IV	7	IT & Digital Economy: Digital Enterprise,		
		Digital Economy, New Communication		CO4
		models, New Business models, New	5 hrs	
		Governance Models. What is an		
		Information system? Types of Information		
		systems		
		IT Strategies: Disaster Recovery planning,		
	8	Cloud computing, Green computing,	4 hrs	
		Offshore outsourcing		
V	IT Ne	etworks and Wireless Communication	9	
	9	IT Networks: Communication systems,		
		Data Transmission Channels, Networking		CO5
		Devices, Network types based on topology	6 hrs	
		and graphical scope, Network Protocols		
		and the OSI Communication Model		
	10	Wireless networks, Communication Service	3 hrs	
		Providers and their services		
Text	Books,	Books:		
Books	Articles,	1. Chapters 2-6 of Vijayakumaran Nair K,	Vinod Ch	andra S S,
and	Readings,	Informatics, PHI, 2014		
Materials	Software,	2. Chapter 1, 18 of Introduction to Inform	mation Te	chnology,
	Websites,	V.Rajaraman, PHI, Third Edition, 2018		
	Tutorials	3. Chapter 1, 2, 7 & 13 of Information Tech	hnology, I	radeep K.

	Sinha, Priti Sinha, PHI, 2017

Course Outcomes

CO	Upon completion of the course the graduate will	Cognitive	PSO
	be able to	Level	addressed
CO1	Develop understanding of data types, knowledge management, digital society, cyber security, and ethical computing.	R, U	PSO2
CO2	Comprehend IT applications including e-governance, bioinformatics, immuno-informatics, and geo- informatics for diverse fields.	R, U	PSO2
CO3	Review futuristic IT concepts and social impacts including AI, VR, biometrics, privacy, and career prospects.	R, U	PSO2
CO4	Comprehend IT's role in digital economy, information systems, strategies like cloud computing, and outsourcing.	R, U	PSO2
CO5	Explain IT networks, protocols, wireless tech, and services offered by communication providers.	R, U	PSO2

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Essentials of Digital Technology

Credits: 3:0:0 (Lecture:Tutorial:Practical)

COs	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L) / Tutorial (T)	Practical (P)
CO1	PO1, PO2, PO5, PSO2	U	F	L	
CO2	PO1, PO2, PO5, PSO2	U	F	L	
CO3	PO1, PO2, PO5, PSO2	U	F	L	
CO4	PO1, PO2, PO5, PSO2	U	F	L	
CO5	PO1, PO2, PO5, PSO2	U	F	L	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	-	3	-	-	-	-
CO2	-	3	-	-	-	-
CO3	-	3	-	-	-	-
CO4	-	3	-	-	-	-
CO5	-	3	-	-	-	-

Mapping of COs with POs:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	-	-	3	-	-
CO 2	3	3	-	-	3	-	-
CO 3	3	3	-	-	3	-	-
CO 4	3	3	-	-	3	-	-
CO 5	3	3	-	-	3	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Discussion / Seminar
- Midterm Exam
- Final Exam

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO1	\checkmark			\checkmark
CO2	\checkmark			\checkmark

CO3	\checkmark	\checkmark	\checkmark
CO4	\checkmark	\checkmark	\checkmark
CO5		\checkmark	

Mar Ivanios College (Autonomous)

SEMESTER II

Discipline	COMPUTER	SCIENCE				
Course Code	MIUK2DSCCS	SA151.1				
Course Title	INTRODUCT	TION TO AI				
Type of Course	DSC					
Semester	II					
Academic Level	100-199					
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours/Week	
	4	3 hours	-	2	5	
Pre-requisites						
Course Summary	This Introducti	on to Artific	ial Intelligen	ce course cov	ers the	
	fundamentals of	of AI, includi	ng its history	y, key technol	ogies like	
	machine learni	ng and natur	al language p	processing, an	d applications	
	across industries such as healthcare, finance, and transportation. It					
	focuses on the	features of k	nowledge ba	sed systems a	nd various	
	searching algor	rithms used.				

Detailed Syllabus:

Module	Unit	Content	Hrs	CO
Ι	IN	TRODUCTION TO ARTIFICIAL INTELLIGENCE	9	1
	1	Introduction to Artificial Intelligence, Background and Applications, Turing Test and Rational Agent approaches to AI. Knowledge: Introduction, Definition and Importance of Knowledge, Knowledge– Based Systems, Representation of Knowledge, Knowledge Organization, Knowledge Manipulation, Acquisition of Knowledge.	9	
II	PREPO	SITIONAL AND PREDICATE LOGIC	9	2
	2	 Propositional logic and predicate logic - Propositional and predicate logic - Syntax Informal and formal semantics -Forward Chaining, Backward Chaining, Resolution Principle; Structured Knowledge: Associative Networks, Frame Structures, Conceptual Dependencies and Scripts. 	9	
III		SEARCHING ALGORITHMS	9	4

	3	State Space Search: Depth First Search, Breadth First Search, Depth First Iterative	6			
		Deepening, Heuristic Search: Best First				
		Search, Hill Climbing, Solution Space,				
		Local Sourch				
		Population Based Methods: Genetic				
		Algorithms Finding Optimal Paths:	3			
		Branch & Bound A* Admissibility of	5			
		A*. Informed Heuristic Functions.				
IV	CONCEPT	ΓS ON PLAYING GAMES	9	3		
	4	Game Theory, Board Games and Game	9			
		Trees, Algorithm Minmax, AlphaBeta and				
		SSS*, Automated Planning: Domain				
		Independent Planning, Blocks World,				
		Forward & Backward Search, Goal Stack				
		Planning, Plan Space Planning.				
V	APPLIC	ATIONS AND TECHNOLOGIES IN AI	9	5		
	5	AI in healthcare: Diagnosis, treatment, and	7			
		medical imaging, AI in finance: Fraud				
		detection, algorithmic trading, and risk				
		assessment, AI in transportation:				
		Autonomous vehicles and traffic				
		optimization, AI in customer service and				
		chatbots, AI in education: Personalized				
		Machina loarning concents. Doon loarning				
		and neural networks. Natural language	2			
		processing (NLP) and computer vision	2			
Text	Books	Books.	<u> </u>			
Books	Articles	1 Russell Norvig Artificial Intelligence: A	Modern A	pproach		
and	Readings.	Third edition. Prentice Hall. 2010.		pprouon,		
Materials	Software,	2. Gendreau, Michel, and Jean-Yves Potvin	, Handboo	ok of		
	Websites,	metaheuristics, Springer, 2010.		0		
	Tutorials	3. Artificial Intelligence Theory, Models, and Applications				
		Unknown Binding, P Kaliraj (Editor), T. De	evi (Editor), 2021,		
		CRC Press				
		Websites:				
		1. https://ai.google/				
		2. https://learn.microsoft.com/en-us/ai/				

Lab Exercises

- 1. Create a program that explores various uninformed search strategies such as breadthfirst and depth-first searches. Analyze their efficiency and effectiveness in different scenarios.
- 2. Develop a program that utilizes informed search strategies like A* or Greedy Best-First Search.

- 3. Construct a knowledge base using propositional and predicate logic.
- 4. Design an ontology for a specific domain and illustrate how it can be used to enhance knowledge representation and retrieval in AI systems.
- 5. Write a program that uses scripts and frames to represent complex scenarios.
- 6. Develop an expert system that uses forward and backward chaining to solve problems.
- 7. Construct a Bayesian network for a given dataset and implement a program that performs inference to predict outcomes under uncertainty.
- 8. Create a decision tree algorithm to classify data.
- 9. Write a program that uses the Rete algorithm

No.	Upon completion of the course the graduate will be able	Cognitive	PSO				
	to	Level	addressed				
CO-1	Understand formal methods of knowledge	U	PSO 2				
	representation.						
CO-2	Understand foundational principles, mathematical	U, An, Ap	PSO 2, 3				
	tools and program paradigms of AI.						
CO-3	Apply problem solving through search for AI	An, Ap	PSO 3, 5				
	application like playing games.						
CO-4	Evaluate the performance of various searching	An, E	PSO 2, 3, 5				
	algorithms.						
CO-5	Identify and analyse the diverse applications of AI, ranging	U, An	PSO2, 5				
	from healthcare and finance to transportation, customer						
	service, and education, thereby enabling them to						
	understand the impact of AI across various sectors						

Course Outcomes

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

Name of the Course: INTRODUCTION TO AI Credits: 4:0:0 (Lecture: Tutorial: Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutoria l (T)	Practical (P)
1	CO1	PSO 2	U	C, F	L	
2	CO2	PSO 2 PSO 3	U, An, Ap	С, М	L	
3	CO3	PSO 3, PSO 5	An, Ap	Р	L	
4	CO4	PSO 2,3,5	An, E	Р	L	
5	CO5	PSO 2,5	U, An	С	L	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO 1		3				
CO 2		2	3			
CO 3			2		3	
CO 4		2	3		1	
CO 5		1			3	

Mapping of COs with PSOs and POs :

Mapping of COs with POs:

	P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7
C 0 1	3	3	-	-	3	2	-
C O 2	3	3	-	-	3	2	-
C O 3	3	3	-	-	2	2	-
C O 4	3	3	-	-	3	2	-
C O 5	3	3	-	-	2	2	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO	\checkmark	\checkmark		\checkmark

1			
CO 2	\checkmark		\checkmark
CO 3	\checkmark		\checkmark
CO 4	\checkmark		\checkmark
CO 5	\checkmark		\checkmark
CO 6	\checkmark	\checkmark	\checkmark

Mar Ivanios College (Autonomous)

Discipline	COMPUTER SCIENCE						
Course Code	MIUK2MDCCSC150.1						
Course Title	PHILOSOPHY OF COMPUTER SCIENCE						
Type of Course	MDC	MDC					
Semester	П						
Academic Level	100-19	9					
Course Details	Credit	Lecture per	Tutorial per	Practical per	Total		
		week week Hours/W					
	3	3 hours	-	-	3 Hours		
Pre-requisites							
Course Summary	Explore	e the intersecti	on of philosopl	hy and compute	er science in this		
	dynami	c course. I	Develop critic	cal thinking	skills through		
	philosophical inquiry while gaining a solid foundation in computer						
	science	science, engineering principles, and practical software					
	develop	oment. The	course empha	asizes ethical	considerations,		
	prepari	ng students for	diverse challe	nges in both fie	lds.		

Detailed Syllabus:

Module	Unit	Content	Hrs	CO
Ι		Philosophy and Computer Science	9	CO1
	1	Philosophy: Introduction, A Definition of	4	
		'Philosophy', What Is Truth?, Searching for the		
		Truth, What Is "Rational"?, Philosophy as a		
		Personal Search, Philosophies of Anything and		
		Everything, Philosophy and Computer Science.		
	2	What Is Computer Science? Introduction,	5	
		Naming the Discipline, Why Ask What CS Is?,		
		What Does It Mean to Ask What Something Is?,		
		CS as the Science of Computers, CS Studies		
		Algorithms, Physical Computers vs. Abstract		
		Algorithms.		
II	Understa	anding Science and Engineering in the Context of	9	CO2

		Computer Science		
	3	Science: Introduction, Science and Non-Science, Science as Systematic Study, The Goals of Science, Instrumentalism vs. Realism, Scientific Theories, "The" Scientific Method, Falsifiability, Scientific Revolutions, Other Alternatives, CS and Science.	6	
	-	as Science, Brief History of Engineering, Conceptions of Engineering, What Engineers Do? The Engineering Method, Software Engineering, CS and Engineering.	5	
III	Algoi	rithms, Computability, and the Philosophy of	9	CO3
		Computers		
	5	Algorithms and Computability, Introduction, Functions and Computation, 'Algorithm' Made Precise, Five Great Insights of CS, Structured Programming, Recursive Functions, Non- Computable Functions.	6	
	6	Computers: A Philosophical Perspective, John Searle's "Pancomputationalism": Everything Is a	3	
		Computer, what Else Might Be a Computer?.		
IV	Ну	percomputation, Software, and Hardware	9	CO4
IV	Hy	Computer, what Else Might Be a Computer?.percomputation, Software, and HardwareHypercomputation:Introduction, GenericComputation, Non-Euclidean Geometries and"Non-Turing Computations", Hyper-computation,Interactive Computation, Oracle Computation,Trial-and-Error Computation.	9 5	CO4
IV	Ну 7	 Computer, what Else Might Be a Computer?. percomputation, Software, and Hardware Hypercomputation: Introduction, Generic Computation, Non-Euclidean Geometries and "Non-Turing Computations", Hyper-computation, Interactive Computation, Oracle Computation, Trial-and-Error Computation. Software and Hardware: The Nature of Computer Programs, Programs and Algorithms, Software, Programs, and Hardware, Moor: Software Is Changeable, Suber: Software Is Pattern, Colburn: Software Is a Concrete Abstraction. 	9 5 4	CO4
IV	Ну 7 8	 Computer, what Else Might Be a Computer?. percomputation, Software, and Hardware Hypercomputation: Introduction, Generic Computation, Non-Euclidean Geometries and "Non-Turing Computations", Hyper-computation, Interactive Computation, Oracle Computation, Trial-and-Error Computation. Software and Hardware: The Nature of Computer Programs, Programs and Algorithms, Software, Programs, and Hardware, Moor: Software Is Changeable, Suber: Software Is Pattern, Colburn: Software Is a Concrete Abstraction. 	9 5 4 9	CO4
IV	Ну 7 8 Соп	Computer, what Else Might Be a Computer?. percomputation, Software, and Hardware Hypercomputation: Introduction, Generic Computation, Non-Euclidean Geometries and "Non-Turing Computations", Hyper-computation, Interactive Computation, Oracle Computation, Trial-and-Error Computation. Software and Hardware: The Nature of Computer Programs, Programs and Algorithms, Software, Programs, and Hardware, Moor: Software Is Changeable, Suber: Software Is Pattern, Colburn: Software Is a Concrete Abstraction. Flexi Module:	9 5 4 9	CO4
IV	ну 7 8 Соп	Computer, what Else Might Be a Computer?. percomputation, Software, and Hardware Hypercomputation: Introduction, Generic Computation, Non-Euclidean Geometries and "Non-Turing Computations", Hyper-computation, Interactive Computation, Oracle Computation, Trial-and-Error Computation. Software and Hardware: The Nature of Computer Programs, Programs and Algorithms, Software, Programs, and Hardware, Moor: Software Is Changeable, Suber: Software Is Pattern, Colburn: Software Is a Concrete Abstraction. Flexi Module: nputer Programs as Scientific Theories and Mathematical Objects	9 5 4 9	CO4 CO5
IV	ну 7 8 Соп 9	Computer, what Else Might Be a Computer?. percomputation, Software, and Hardware Hypercomputation: Introduction, Generic Computation, Non-Euclidean Geometries and "Non-Turing Computations", Hyper-computation, Interactive Computation, Oracle Computation, Trial-and-Error Computation. Software and Hardware: The Nature of Computer Programs, Programs and Algorithms, Software, Programs, and Hardware, Moor: Software Is Changeable, Suber: Software Is Pattern, Colburn: Software Is a Concrete Abstraction. Flexi Module: nputer Programs as Scientific Theories and Mathematical Objects Computer Programs as Scientific Theories: introduction, Simulations, Computer Programs Aren't Theories.	9 5 4 9 4	CO4

		Verification, Models, and the World.				
Text	Books,	Books:				
Books	Articles,	1. Chapter 2-5, 7, 9, 11, 12, 14, 15 of William J. Rapaport,				
and	Readings,	Philosophy of Computer Science: An Introduction to the				
Materials	Software,	Issues and the Literature, Wiley-Blackwell, 2023				
	Websites,					
	Tutorials					

Course Outcomes

CO	Upon completion of the course the graduate will	Cognitive	PSO
	be able to	Level	addressed
CO1	Gain deep understanding of philosophy's nature, truth, rationality, alongside computer science's foundations and algorithms.	R, U	PSO3
CO2	Explain science's principles, methods, theories, and its relation to engineering and computer science.	R, U	PSO3
CO3	Grasp fundamental concepts of algorithms, computability, and the philosophical perspective on computers.	R, U	PSO3
CO4	Exploreadvancedtopicsincludinghypercomputation, software nature, and the interplaybetween programs and hardware.	R, U	PSO5
CO5	Evaluate computer programs as scientific theories and mathematical entities, examining verification methods and theoretical controversies.	R, U	PSO2

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: Philosophy of Computer Science

Credits: 3:0:0 (Lecture: Tutorial: Practical)

CO	PO/PSO	Cognitive	Knowledge	Lecture (L) /	Practical (P)
		Level	Category	Tutorial (T)	
CO1	PO1, PO2, PO5, PSO3	U	С	L	
CO2	PO1, PO2, PO5, PSO3	U	С	L	
CO3	PO1, PO2, PO5, PSO3	U	С	L	
CO4	PO1, PO2, PO5, PSO5	U	C	L	

CO5	PO1, PO2, PO5, PSO2	U	С	L	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	-	-	3	-	1	-
CO2	-	1	3	-	1	-
CO3	-	-	3	-	1	-
CO4	-	1	2	-	3	-
CO5	-	3	2	-	1	-

Mapping of COs with POs:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	3	-	-	2	-	-
CO2	3	3	-	-	2	-	-
CO3	3	3	-	-	3	-	-
CO4	3	3	-	-	3	-	-
CO5	3	3	-	-	2	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Discussion / Seminar
- Midterm Exam
- Final Exam

Mapping of COs to Assessment Rubrics:

	Internal	Assignment	Project	End Semester
	Exam		Evaluation	Examinations
CO1	\checkmark			\checkmark
CO2	\checkmark			\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark
CO5		\checkmark		

Mar Ivanios College (Autonomous)

SEMESTERIII

Discipline	COMPUTER SCIENCE						
Course Code	MIUK3DSCCS	A201.1					
Course Title	Introduction to	o Machine I	Learning				
Type of Course	DSC						
Semester	III						
Academic Level	200-299						
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours/Week		
	4	3 hours	-	2 hours	5		
Pre-requisites							
Course Summary	Explore machine learning fundamentals, AI applications, and data						
	essentials, inclu	uding archite	ecture, techn	iques, and to	ols like Scikit		
	Learn and Pand	as.					

Detailed Syllabus:

Module	Unit	Content	Hrs	CO
Ι	MACHIN	NE LEARNING DEFINED - ACADEMIC AND INDUSTRY PERSPECTIVE	9	1
	1	Machine Learning Academic and Industry Definition - Features of Machine Learning - Types of Machine Learning - Machine Learning Approaches - Machine Learning Techniques - Features of Machine Learning - Applications of Machine Learning	4	
	2	Artificial Intelligence and Cognitive Technologies - Impact of Cognitive Technologies - Features - Benefits - Growth - Role of Cognitive Technologies in an Enterprise Implementation	5	
II	MACHI	NE LEARNING ARCHITECTURE AND REAL WORLD APPLICATIONS	9	2
	3	Understanding Machine Learning Architecture - Data Collection - Data Integration - Data Provisioning - Feature Engineering - Understanding Machine Learning Workflow - Problem Statement - Data Engineering - Model Engineering - Model Deployment - AI Applied in Health –	9	

		Case Management Analysis - AI Applied in		
		Health - Care Management Analysis - AI		
		Applied in Health – Patient Readmission		
		Analysis		
III	EXPL	DRATION OF MACHINE LEARNING	9	3
		TECHNIQUES AND MODELS		-
	4	Machine Learning Models – Supervised -	4	
		Unsupervised - Reinforcement Machine		
		Learning Models.		
	5	Introduction to Machine Learning	5	
		Regression Problems - Introduction to		
		Machine Learning Classification Problems -		
		Difference Between Regression and		
		Classification - Linear Regression -		
		Polynomial Regression - Ridge Regression -		
		Lasso Regression		
IV	CLASSI	FICATION IN MACHINE LEARNING:	9	4
		TECHNIQUES,		
	6	Classification – Logistic Regression - Naïve	9	
		Bayes - Random Forest - XGBoost - What		
		Problem Does Machine Learning Solve -		
		Getting Started with Machine Learning		
		Problem Types - Understanding Machine		
		Learning Problem Types - Classification		
		Problems in Machine Learning - List of		
		Classification Models.		
V	DAT	A COLLECTION AND SOFTWARE	9	5
		ESSENTIALS		
	7	Machine Learning Data Requirements -	5	
		Introduction to Data Collection Strategy -		
		Type of Data needed - Useful Known		
		Features - Source of Data - Amount of Data		
		needed - Quality of Data needed -		
		Permission to Collect and use data -		
	8	Understanding the Hardware and software	4	
		Specifications - Scikit Learn - Numpy -		
		Pandas – SciPy - Matplotlib		
Text	Books,	Books:		_
Books	Articles,	1. Introduction to Machine Learning with	Python, I	By
and	Readings,	Andreas C. Muller and Sarah Guido, C	October 20	16.
Materials	Software,	2. Essential Machine Learning and Pragn	natic AI, E	y Noah
	Websites,	Gift, December 2018	NT	
	1 utorials	3. Machine Learning Yearning by Andrey	w Ng,	
		deeplearning.ai, 2018.	n ~ D41	D
		4. Hands-On Unsupervised Learning Usin	ng Python	, ву
		Allkur A. Patel, Warch 2019.	Dry Ameri	- Me
		5. Clustering and Unsupervised Learning	, Dy Aligi	e ivia,
		Gary with and Alessandra Stagliano,	August 20	nd S V N
1	1	1 0. Information to Machine Learning, Ale	a sinuta a	IIU D. V.IN.

	Vishwanathan
	Tutorials:
	Stanford Lectures of Andrew Ng.
ab E	xercises
1.	Write a Python script to load a dataset and perform basic exploratory data analysis (EDA) using pandas and matplotlib.
2.	Implement a simple "Hello World" example of a machine learning algorithm using scikit-learn.
3.	Split a dataset into training and testing sets and train a supervised learning model (e.g., linear regression or decision tree).
4.	Use clustering algorithms (e.g., K-means) to group data points into clusters without labels.
5.	Build a classification model using logistic regression to predict the likelihood of a customer buying a product based on demographic data.
6.	Identify and collect relevant datasets for a given machine learning problem statement.
7.	Write Python code to scrape data from a website or API using libraries like BeautifulSoup or requests.
8.	Handle missing values and perform data imputation techniques to fill in missing data.
9.	Analyze a dataset related to healthcare case management and identify key features for predicting patient outcomes.
10	Build and evaluate machine learning models to predict patient case management outcomes (e.g., length of stay or treatment success).
1 1	

- 11. Implement a supervised learning algorithm (e.g., decision trees or support vector machines) to predict house prices based on features such as square footage, number of bedrooms, and location.
- 12. Evaluate the performance of the model using metrics such as mean squared error or accuracy.

No.	Upon completion of the course, the graduate will	Cognitive	PSO
	be able to	Level	addressed
CO-1	Understand machine learning principles, applications,	U	PSO2
	and the significance of cognitive technologies		
CO-2	Navigate machine learning architecture, workflow,	U	PSO1,
	and its real-world applications.		PSO4,
			PSO5
CO-3	Gain expertise in diverse machine learning models	U	PSO2,
	(supervised, unsupervised, Reinforcement).		PSO4
CO-4	Discover basic classification techniques and problem-	U	PSO3,5
	solving in machine learning		
CO-5	Understand data needs, collection strategies, and	U	PSO2,3,5
	software specifications for machine learning.		
CO-6	Gain practical skills in loading, analyzing data,	Ар	PSO3,
	implementing basic machine learning algorithms, data	-	PSO4,
	preprocessing, model training, and evaluation.		PSO6

Course Outcomes

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutoria l (T)	Practical (P)
1	CO1	PSO2	U	С	L	
2	CO2	PSO1, PSO4, PSO 5	U	С, Р	L	
3	CO3	PSO2, PSO4	U	Р	L	
4	CO4	PSO3, PSO5	U	Р	L	
5	CO5	PSO2,3, 5	U	С	L	
6	CO6	PSO3, PSO4, PSO6	Ар	Р		Р

Name of the Course: Introduction to Machine Learning Credits: 3:0:2 (Lecture: Tutorial: Practical)

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PS O1	PS O2	PS 03	PS O4	PS O5	PS 06	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1		3					3	1	-	-	3	-	-
CO 2	1			3	2		-	1	-	1	3	-	-
CO 3		2		3			-	2	-	1	1	-	-
CO 4			3		2		3	-	-	2	2	-	-
CO 5		2	3		1		3	-	-	1	-	-	-
CO 6			2	1		2	3	1	-	1	1	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		
CO 6	\checkmark	\checkmark		\checkmark

Mar Ivanios College (Autonomous)

SEMESTER IV

Discipline	COMPUTER SCIENCE				
Course Code	MIUK4DSECSA25	1.1			
Course Title	Python Programmi	ing			
Type of Course	DSE				
Semester	IV				
Academic Level	200-299				
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours/Week
	4	3 hours	-	2 hours	5
Pre-requisites	A basic understanding	ng of fundame	ental programi	ming concepts	and familiarity
	with basic computer	skills can enh	nance the learn	ning experience	.
Course Summary	This course is desig	ned to provid	le students wi	th an overview	v of the various
	tools available for w	riting and run	nning Python.	It aims to get	students coding
	quickly. As Python is the language of choice for data analysts and data				
	scientists, the curriculum covers essential topics on how to use functions,				
	methods, and pack	ages to effic	iently leverage	ge the code n	eeded to solve
	challenging problem	IS.			

Detailed Syllabus:					
Module	Unit	Content	Hrs	CO	
		INTRODUCTION TO PYTHON	12		
	1	Features of Python, How to run Python, Identifiers, Reserved Keywords, Variables, Comments, Indentation, Input, Output and Import Functions, Operators. Data Types and Operations - Numbers, Strings, List, Tuple, Set, Dictionary, Mutable and Immutable Objects, Data Type Conversion.	6	CO1,	
I	2	Decision Making – if statement, ifelse statement, ifelifelse statement, Nested if statement. Loops - for loop, range() function, for loop with else statement, while loop, while loop with else statement. Control Statements - break Statement, continue statement, pass statement.	6	CO2	
	FUN	CTIONS AND FUNCTION ARGUMENTS	6		
п	3	Definition, Function Calling. Functions Arguments - Required arguments, Keyword arguments, Default arguments, Variable-Length arguments. Anonymous Functions (Lambda	6	CO2	
		Functions) - filter() function, reduce() function,			
		Recursive Functions.			
	MO	DULES, PACKAGES, FILE HANDLING	7		
III		Modules & Packages - Built-in Modules, Creating Modules, import statement, locating			

	4	modules, Namespaces and Scope, dir (), reload (), Packages in Python. File Handling - Open, Close, Write, Read, File methods, Rename, Delete. Directories in Python.	7	CO3
IV	OBJECT (DRIENTED PROGRAMMING IN PYTHON	8	
	5	Class, Objects, Methods, Attributes, Destructor, Encapsulation, Data hiding. Exception handling - built in exceptions, Handling, Exception with arguments, Raising and User defined exceptions, Assertions in Python.	8	CO3
	GI	JI AND DATABASE PROGRAMMING	12	
V	6	Regular expressions – match, search, replace, patterns. GUI programming – Introduction, Tkinter Widgets. Database Programming - Establishing Connection, insert, retrieve, delete, rollback and commit operations.	12	CO4
Text	Books,	Books:		
Books	Articles,	Jeeva Jose, Taming PYTHON By Programming,	Khanna F	Publications,
and	Readings,	2017.		
Materials	Software,	Websites:		
	Websites,	https://www.w3schools.com/python/		
	Tutorials	https://www.programiz.com/python-programming		

Lab Exercises:

- 1. Programs based on Python data structures- List, Set, Tuple, Strings.
- 2. Programs involving flow control statements.
- 3. Build the Programs using functions and recursive functions.
- 4. Programs on Modules and Packages.
- 5. Programs based on files.
- 6. Demonstrate classes and objects.
- 7. Programs on exception handling.
- 8. Create programs on regular expressions.
- 9. Programs using Tkinter widgets.
- 10. Develop programs on database.

Course Outcomes

No.	Upon completion of the course the graduate will be	Cognitive	PSO
	able to	Level	addressed
CO-1	Interpret the fundamental Python syntax and semantics and be fluent in the use of Python control flow statements and functions.	R, U	PSO2
CO-2	Determine the methods to create and manipulate Python programs by utilizing the data structures like lists, dictionaries, tuples and sets.	U, Ap	PSO2, PSO3
CO-3	Articulate the object-Oriented Programming concepts and identify the commonly used operations involving file systems and Exception handling.	Ар	PSO4, PSO5
CO-4	Implement regular expressions in exemplary applications related to Web services and Databases in Python.	С	PSO5, PSO6
CO-5	Create diverse Python programs using different programming concepts	С	PSO-3,4,5

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module* **Name of the Course:** Python programming

Credits: 3:0:2 (Lecture: Tutorial: Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutorial (T)	Practical (P)
1	CO1	PSO2, PSO3	R, U	F, C	L	
2	CO2	PSO2, PSO3, PSO4	U, Ap	С, Р	L	
3	CO3	PSO3, PSO4, PSO5	Ар	С, Р	L	
4	CO4	PSO3, PSO4, PSO5, PSO6	С	Р	L	
5	CO5	PSO3, PSO4, PSO5	С	Р, М		Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive Mapping of COs with PSOs:

	PSO1	PSO2	PSO3	PSO4	PS O5	PSO6
CO 1	-	1	2	-	-	-
CO 2	-	1	2	3	-	-
CO 3	-	-	2	3	3	-
CO 4	-	-	2	3	3	3
CO 5	-	-	2	3	3	-

Mapping of COs with POs:

	P 0 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7
C 0 1	3	3	-	-	3	2	-
C O 2	3	3	-	-	3	2	-
C O 3	3	3	-	-	2	2	-
C O 4	3	3	-	-	3	3	-
C O 5	3	3	-	-	3	3	-

Correlation Levels:

Leve l	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignmen t	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark

Mar Ivanios College (Autonomous)

SEMESTER V

Discipline	COMPUTER SCI	ENCE			
Course Code	MIUK5DSECSA3)1.1			
Course Title	Reinforcement Le	arning			
Type of	DSE				
Course					
Semester	V				
Academic	300-399				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours/Week
	4	3 hours	-	2 hours	5
Pre-requisites	Solid foundation in	machine lea	rning and pr	ogramming, p	particularly in
	Python				
Course	Provides a compre	hensive und	lerstanding of	of Reinforcen	nent Learning,
Summary	covering foundatio	covering foundational concepts, advanced algorithms, and real-world			
	applications, equip	ping student	ts with both	theoretical k	nowledge and
	practical skills in th	is dynamic f	field of AI		

Detailed Syllabus:

Module	Unit	Content	Hrs	CO
I	INTF	RODUCTION TO REINFORCEMENT LEARNING	9	1
	1 Definitions and Scope of RL - Components of an RL Agent - Reinforcement Learning for AI - Use and applications of RL - The RL Framework: Rewards, States, and Actions - Overview of Markov Decision Processes (MDPs) - Goals and Objectives of RI			
II	EXF	PLORATION AND EXPLOITATION	9	2
	2	Understanding Policy and Value Functions - The Bellman Equations for Value Iteration - Balancing Exploration and Exploitation - Multi-Armed Bandits and Bandit Algorithms - Epsilon-Greedy and Softmax Strategies.		
III		LEARNING AND PLANNING	9	3
	3	Basics of Dynamic Programming in RL - Temporal Difference (TD) Learning: TD(0)		

		and $TD(\lambda)$ - Introduction to Q-Learning - SARSA: On-policy TD Control - Differences between Model-based and Model-free RL.		
IV	FUNCTIO 4	ON APPROXIMATION AND CONTROL Linear Function Approximation - Nonlinear Function Approximation: Neural Networks - Deep Q-Networks (DQN) and its Variants - Policy Gradient Methods: REINFORCE -	9	4
V		Actor-Critic Methods: A3C and A2C. ADVANCED RL	9	5
	5	Current trends and future directions in RL - Recommender Systems - RL in personalization algorithms - RL applications in robotics - RL in self-driving car decision- making - Ethical implications of RL - Responsible AI and societal impact.		
Text Books and Materials	Books, Articles, Readings, Software, Websites, Tutorials	Books: 1. <i>Reinforcement Learning: An Introducti</i> Sutton and Andrew G. <u>Barto</u> , MIT Pres 2018.	<i>ion</i> by Ric ss, Second	hard S. edition,

Lab Exercise

Lab 1: Introduction to RL Environments

- Question: How does the agent interact with the environment in OpenAI Gym?
- Tools: Python, OpenAI Gym library

Lab 2: Implementing Simple Bandit Algorithms

- **Question:** Implement and compare the performance of different bandit algorithms on a simulated slot machine.
- **Tools:** Python, NumPy library

Lab 3: Dynamic Programming in Gridworld

- **Question:** How would you apply value iteration to find the optimal policy in a Gridworld environment?
- Tools: Python, Matplotlib for visualization

Lab 4: Temporal Difference Learning

- **Question:** Implement TD(0) for policy evaluation and demonstrate its convergence.
- Tools: Python, Jupyter Notebook for iterative development

Lab 5: Q-Learning in a Maze

- Question: Develop a Q-Learning agent to navigate a maze and reach a goal state.
- Tools: Python, OpenAI Gym for the maze environment
- Lab 6: SARSA vs. Q-Learning
 - **Question:** Compare the learning curves of SARSA and Q-Learning in a simple environment.
 - Tools: Python, OpenAI Gym, Matplotlib for plotting results

Lab 7: Function Approximation

- **Question:** How does function approximation improve the scalability of RL algorithms?
- **Tools:** Python, Scikit-learn for linear models

Lab 8: Deep Q-Networks (DQN)

- **Question:** Implement a DQN to play a simple video game and analyze its performance.
- Tools: Python, TensorFlow or PyTorch, OpenAI Gym

Lab 9: Hierarchical RL

- **Question:** Design a hierarchical agent and explain how it solves complex tasks more efficiently.
- Tools: Python, TensorFlow, or PyTorch

Lab 10: Multi-agent RL

- **Question:** Set up a cooperative multi-agent scenario and observe the emergent behaviors.
- **Tools:** Python, OpenAI Gym, Multi-agent reinforcement learning framework

Lab 11: Exploration Strategies

- **Question:** Experiment with different exploration strategies and measure their impact on learning.
- Tools: Python, OpenAI Gym, NumPy for statistical analysis

Lab 12: Current Research in RL

- **Question:** Replicate an experiment from a recent RL research paper and discuss the results.
- Tools: Python, relevant RL libraries/frameworks, research paper for reference

No.	Upon completion of the course, the graduate will	Cognitive	PSO
	be able to	Level	addressed
CO-1	Understand the foundational principles of RL and its	U, Ap	PSO2,
	role in AI and be able to formulate problems as MDPs		PSO3,
	and apply basic RL algorithms.		PSO5
CO-2	Gain proficiency in implementing bandit algorithms	Ар	PSO4,
	and understanding their applications.		PSO5
CO-3	Able to design and evaluate model-based and model-	Ap, An	PSO3,
	free RL algorithms.		PSO5
CO-4	Develop skills in function approximation for RL and	Ap, U, An	PSO3,
	implement advanced algorithms like DQN and		PSO5,
	understand policy gradient methods		PSO6
CO-5	Explore cutting-edge RL topics and their real-world	U, E, C	PSO2,
	applications and also be prepared to engage with		PSO3,
	current research and contribute to the field of RL		PSO5,
			PSO6
CO-6	Able to implement and analyze reinforcement	Ap, An	PSO1,
	learning algorithms in simulated environments		PSO3,
			PSO4,
			PSO5.

Course Outcomes

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create *Note: 1 or 2 COs/module*

Name of the Course: Reinforcement Learning

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutoria l (T)	Practical (P)
1	CO1	PSO2, PSO3, PSO5	U, Ap	С, Р	L	
2	CO2	PSO4, PSO5	Ар	Р	L	
3	CO3	PSO3, PSO5	Ap,An	P,C	L	
4	CO4	PSO3, PSO5, PSO6	Ap, U, An	P, C	L	
5	CO5	PSO2, PSO3, PSO5, PSO6	U, E, C	С, М	L	
6	CO6	PSO1, PSO3, PSO4, PSO5.	Ap, An	Р, М		Р

Credits: 3:0:2 (Lecture: Tutorial: Practical)

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive Mapping of COs with PSOs and POs :

PSO1 PSO2 PSO3 PSO4 PSO5 PSO6 **CO 1** 1 --_ _ _ **CO 2** 2 3 ----**CO 3** -1 ----2 **CO 4** _ 3 _ --**CO 5** 1 -----3 **CO 6** -----

Mapping of COs with POs:

	P 0 1	P O 2	P O 3	Р О 4	P O 5	P O 6	P O 7
C 0 1	3	-	-	-	3	-	-
C O 2	2	1	-	-	3	-	-
C O 3	1	-	-	-	2	-	-
C O	-	1	-	-	2	-	-

4							
C O 5	2	-	-	-	2	-	-
C O 6	2	1	-	-	2	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		
CO 6	\checkmark	\checkmark		\checkmark

Mar Ivanios College (Autonomous)

SEMESTER VI

Discipline	COMPUTER SCIENCE					
Course Code	MIUK6DSECSA35	51.1				
Course Title	Deep Learning					
Type of	DSE					
Course						
Semester	VI					
Academic	300-399					
Level						
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours/Week	
	4	3 hours	-	2 hours	5	
Pre-requisites	Basic understanding	g of machine	e learning con	ncepts, and fa	miliarity with	
	programming languages such as Python.					
Course	Acquire expertise in all aspects of deep learning, including fundamental					
Summary	theories, workflow	strategies, ai	chitectural in	mplementatio	ns, neural	
	network insights, co	oncepts of ge	enerative AI,	and hardward	e integration.	

Detailed Syllabus:

Module	Unit	Content	Hrs	CO
Ι	FOUNDA	TIONS AND APPLICATIONS OF DEEP LEARNING	9	1
	1	Deep Learning defined from Academic and industry perspective - Functions of a deep learning system - How a business uses deep learning - How deep learning works? - Deep Learning Architecture - Deep Learning Libraries - Deep Learning Implementation Framework.	4	
	2	The core of deep learning: ANN - Role of deep neural networks - Deep learning and machine learning - Deep learning vs Data Science - Teaching artificial neurons unknown functions - Error measurement in neural networks - Gradient descent - Loss functions - Learning rates.	5	
II	DEE	P LEARNING IMPLEMENTATION PIPELINE	9	2
	3	Deep Learning Workflow - Steps in Deep Learning in Implementation - Data	9	

		Collection - Public Datasets - Existing Databases - Data Preparation - Cleaning Data - Feature Scaling - Handling categorical data & text - Model Engineering - Test Train Split - Handling Imbalanced Data - Model Training - Model Validation - Model Test - Model Outcome - Model Accuracy - Tune Hyperparameters - Deploy Model - Monitor Predictions - Manage your models.		
III	DEEP IMI	LEARNING ARCHITECTURES AND PLEMENTATION FRAMEWORKS	9	3
	4	Deep Learning Architectures - Components of a deep learning solution - Data Generation, Collection, Training, Evaluation - Task Orchestration – Prediction.	4	
	5	Deep Learning Implementation Framework - Features of a good deep learning framework - Popular deep learning frameworks.	5	
IV	NEURAL AR	NETWORKS: FROM BIOLOGICAL TO TIFICIAL AND GENERATIVE AI	9	4
	6	Neural Networks: An Overview - Biological Neural Networks - Artificial Neural Networks: Neurons – Connections – Learning rule. Deep Neural Networks: Classification: models - Convolutional Neural Networks - Regression: Artificial Neural Networks	7	
	7	Introduction to Generative AI – DALL E2, DALL E3.	2	
V	DA	TA STRATEGY TO HARDWARE IMPLEMENTATION:	9	5
	8	Supervised Models - Unsupervised Models - Data Collection strategy for ML - How much data is needed - Is your data good enough? - Data Structure.	4	
	9	Building a Deep Learning Hardware system – Benefits – Challenges - Choosing the hardware components (GPU, TPU) - Choosing the software components - Choosing the OS - Adding Packages - Customer Churn - Who is going to churn? - When the churn will occur - Why(reason) is the churn occurring.	5	
Text	Books,	Books:		
Books and Materials	Articles, Readings, Software, Websites,	 Deep Learning from Scratch, by Seth V September 2019, Publisher(s): O'Reilly Introduction to Deep Learning, Book b Deep Learning: A Practical Approach, 	Weidman, 7 Media, Ir 99 Eugene PB Paper	Released nc. Charniak back – 1

Tutorials	January 2018 by Rajiv Chopra.

Lab Exercises:

- 1. Build a simple artificial Neural Network with 1 layer, with 1 neuron, and the input shape equal to 1, feed some data, use the equation y=5x-3, where x = -2, y=-4, and train the network.
- 2. Using Tensorflow Build a network with a single hidden layer and at least 300,000 trainable parameters
- 3. Using Tensorflow build 3 networks, each with at least 10 hidden layers such that:
 - The first model has fewer than 10 nodes per layer.
 - The second model has between 10-50 nodes per layer.
 - The third model has between 50-100 nodes per layer.
- 4. Build a network with at least 3 hidden layers that achieve better than 92% accuracy on validation and test data. You may need to train for more than 10 epochs to achieve this result.
- 5. Build a network for classification using the built-in MNIST dataset.
- 6. Build a network for classification using the built-in MNIST dataset and Use the sigmoid activation function.
- 7. Conduct an experiment on Object detection using a Convolution Neural Network.
- 8. Build a Recommendation system using Deep Learning techniques.
- 9. Use Recurrent Neural Network to Perform Sentiment Analysis.
- 10. Using Generative Adversarial networks performs Image generation.
- 11. Deep Learning Hands-On Lab Work Build, Test, and Deploy ML Models.

Course Outcomes

No.	Upon completion of the course, the graduate will	Cognitive	PSO
	be able to	Level	addressed
CO-1	Get Hands-on Knowledge, Skills, and Expertise to	U	PSO2,
	define deep learning from both the academic and		PSO5
	industry perspective and all the related concepts		
CO-2	Adopt the best strategies for deep learning data	Ар	PSO3,
	collection, pre-processing, and model engineering		PSO5
	tasks		
CO-3	Gain a comprehensive understanding of deep learning	U	PSO2,
	architectures and implementation frameworks		PSO5
CO-4	Get to know all the deep learning models involved in	U, Ap	PSO2,
	building deep learning applications		PSO5
CO-5	Understand all the data software, and hardware	U	PSO1,
	requirements for building deep learning models		PSO4,
			PSO5
CO-6	Get Hands-on Knowledge, Skills, and Expertise in a	Ар	PSO1,
	real-world use case implementation		PSO4,
	-		PSO6

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Note: 1 or 2 COs/module

Name of the Course: Deep Learning

Credits: 3:0:2 (Lecture: Tutorial: Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutoria l (T)	Practical (P)
1	CO1	PSO2, PSO5	U	С	L	
2	CO2	PSO3, PSO5	Ар	Р	L	
3	CO3	PSO2, PSO5	U	С	L	
4	CO4	PSO2, PSO5	U, Ap	С	L	
5	CO5	PSO1, PSO4, PSO5	U	С	L	
6	CO6	PSO1, PSO4, PSO6	Ар	Р		Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO 1	1	-	-	-	-	-
CO 2	2	3	-	-	-	-
CO 3	-	-	1	-	-	-
CO 4	-	-	2	3	-	-
CO 5	-	1	-	-	-	-
CO 6	-	-	-	3	-	-

Mapping of COs with POs:

	Р О 1	P 0 2	P 0 3	P 0 4	Р О 5	P 0 6	P O 7
C 0 1	3	2	-	-	2	-	-
C O 2	2	1	-	-	2	-	-
C O 3	2	1	-	-	1	-	-
C O 4	-	-	-	-	2	-	-
C O 5	1	-	-	-	1	-	-
С	1	-	-	-	2	-	-

0				
6				

Correlation Levels:

Level	Correlation	
-	Nil	
1	Slightly / Low	
2	Moderate / Medium	
3	Substantial / High	

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		
CO 6	\checkmark	\checkmark		\checkmark