MAR IVANIOS COLLEGE (AUTONOMOUS) THIRUVANANTHAPURAM

Reg. No. :
Name :
First Semester B.Sc. Degree Examination, November 2014 First Degree Programme under CBCSS
Complementary Course: Mathematics - II (for Chemistry)
AUMM131.2b: Differentiation and Matrices
Time: $\mathbf{3}$ Hours
Max. Marks: 80

SECTION - A

Answer ALL questions / problems in one or two sentences.

1. What is the vertical line test for a curve to be the graph of some function?
2. Which is the natural domain of $x^{2}-3 x+2$?
(i). $[-1, \infty)$
(ii). $(2, \infty)$
(iii). $(-\infty, 2]$
(iv). $(-\infty, \infty)$
3. Define absolute value of a real number.
4. What is the interpretation of slope m of a non - vertical line $y=(m x+b)$?
5. State Rolle's Theorem.
6. Define instantaneous rate of change of $y=f(x)$ with respect to x.
7. State Euler's theorem for homogenous function.
8. Define the rank of a matrix.
9. When do we say that a system of equations is consistent ?
10. Define equivalent matrices. Give an example.
($10 \times 1=10$ Marks)

SECTION - B

Answer any EIGHT questions / problems, not exceeding a paragraph.
11. Sketch the parametric curve $x=2 t-1, y=t+1,(1 \leq t \leq 2)$ and indicate its orientation.
12. Find the equation of the tangent line to the curve $y^{2}=k x$ at $\left(x_{0}, y_{0}\right)$.
13. A particle moves on a line away from its initial position so that after t hours it is $S=3 t^{2}+t$ miles away from its initial position. Find the average velocity of particle over the interval $[1,3]$ and also the instantaneous velocity at $t=1$.
14. Evaluate the following limits
(i). $\lim _{y \rightarrow 6}\left|\frac{y+6}{y^{2}-36}\right|$
(ii). $\lim _{x \rightarrow 0}\left|\frac{\sqrt{x+4}-2}{x}\right|$
(iii). $\lim _{x \rightarrow \infty}\left|\frac{\sqrt{3 x^{4}+x}}{x^{2}-8}\right|$
15. Find the Taylor series for $x \sin x$ about $x=\frac{\pi}{2}$.
16. Find the interval of convergence and radius of convergence of $\sum_{k=1}^{\infty} \frac{(x-5)^{k}}{k^{2}}$.
17. If $w=\sqrt{x^{2}+4 y^{2}-z^{2}}$. Find $\frac{\partial w}{\partial x}$.
18. Use the formula for the binomial series to obtain the Maclaurin's Series for $f(x)=\frac{1}{\sqrt{1+x}}$.
19. A point moves along the intersection of the elliptic paraboloid $z=x^{2}+3 y^{2}$ and the plane $y=1$. At what rate is z changing with x when the point is at $(2,1,7)$?
20. What are the various elementary column transformations in matrices ?
21. When do we say that a matrix is in the normal form ?
22. Define the characteristic equation and eigen values of a matrix.
($8 \times 2=16$ Marks)

SECTION - C

Short essay type problems : Answer any SIX questions.
23. Find the Maclaurin series of for the function $\tan ^{-1} x$.
24. (i). Describe the family of curves described by $x=a \cos (t+h), y=b \sin (t+k)$, $0 \leq t \leq 2 \pi$, where h and k are fixed but a and b can vary.
(ii). Define a vertical and horizontal asymptote of the graph of the function $f(x)$.
(iii). Find the horizontal asymptote of $f(x)=\frac{3 x+1}{x}$.
25. (i). One meter is about 6.214×10^{-4} miles. Find a formula $y=f(x)$ that expresses a length x in meters as a function of the same length y in miles.
(ii). Find a formula for the inverse of f.
(iii). In practical terms what does the formula $x=f^{-1}(y) x$ above tell you ?
26. (i). Compute $\frac{d z}{d t}$ where $z=5 x^{2} y^{5}-2 x, x=t^{2}$ and $y=t^{3}+7$.
(ii). Let f be a differentiable function of one variable and let $z=f\left(x^{2}+y^{2}\right)$. Show that $y \frac{\partial z}{\partial x}-x \frac{\partial z}{\partial y}=0$.
27. Suppose that the temperature at a point (x, y) on a metal plate is $T(x, y)=4 x^{2}-4 x y+y^{2}$. An ant walking on the plate traverses a circle of radius 5 centered at the origin. What are the highest and lowest temperatures encountered by the ant?
28. For the matrix $\mathrm{A}=\left[\begin{array}{cc}-1 & 4 \\ 0 & 3\end{array}\right]$, find a matrix P such that $P^{-1} A P$ is diagonal.
29. (i). Define a homogenous and non - homogenous system of equations.
(ii). Show that the system of equations is consistent and solve them.

$$
\begin{aligned}
& x+2 y+z=2 \\
& 3 x+y-2 z=1 \\
& 4 x-3 y-z=3 \\
& 2 x+4 y+2 z=4
\end{aligned}
$$

30. Find the row reduced echelon form of the matrix $\left[\begin{array}{ccc}2 & 2 & 1 \\ 1 & -1 & 3 \\ 0 & 0 & 1\end{array}\right]$ and determine its rank.
31. Find all eigen values and the eigen vectors corresponding to the largest eigen value of the matrix $\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$.

SECTION - D

Long essay type problems : Answer any TWO questions.
32. (i). Determine the dimensions of a rectangular box open at the top having volume V and requiring the least amount of material for its construction.
(ii). Using Lagrange multipliers, find the points on the sphere $x^{2}+y^{2}+z^{2}=36$ that are closest to and farthest from the point $(1,2,2)$.
33. (i). Find three positive numbers whose sum is 48 and such that the sum of their squares is as small as possible.
(ii). The volume V of a right circular cone is given by $\mathrm{V}=\frac{\pi}{24} d^{2} \sqrt{4 s^{2}-d^{2}}$, where s is the slant height and d is the diameter of the base.
(a). Find a formula for the instantaneous rate of change of V with respect to d if s remains constant.
(b). Suppose that d has a constant value of 16 cm , but s varies. Find the rate of change of V with respect to s when $s=10 \mathrm{~cm}$.
34. (i). Using total differential, estimate the change in $Z=x y^{2}$ from its value at $(0.5,1.0)$ to its value at $(0.503,1.004)$. Compare the error in this estimate with the distance between the points $(0.5,1.0)$ and $(0.503,1.004)$.
(ii). Diagonalise the matrix $\left[\begin{array}{ccc}5 & 0 & 0 \\ 1 & 0 & 3 \\ 0 & 0 & -2\end{array}\right]$.
35. (i). Test the consistency of the system and solve if consistent,

$$
\begin{aligned}
& 2 x_{1}-3 x_{2}=1 \\
& -x_{1}+3 x_{2}=0 \\
& x_{1}-4 x_{2}=3 .
\end{aligned}
$$

(ii). Find the eigen values and the eigen vectors of the matrix $\left[\begin{array}{ccc}0 & 1 & 0 \\ 3 & 0 & 1 \\ 1 & -3 & 3\end{array}\right]$.

$$
\int * \int *
$$

