MAR IVANIOS COLLEGE (AUTONOMOUS) THIRUVANANTHAPURAM

Reg. No. :.
Name :
Third Semester B.Sc. Degree Examination, November 2016 First Degree Programme under CBCSS
Complementary Course: Mathematics - III (for Chemistry and Physics)
AUMM331.2b/ AUMM331.2d: Vectors and Differential Equations
Time: $\mathbf{3}$ Hours
Max. Marks: 80

SECTION - A

Answer ALL questions / problems in one or two sentences.

1. Find $\vec{r}^{\mathrm{I}}(0)$ if $\vec{r}(t)=(3 \operatorname{sint}) \vec{\imath}-(2 t) \vec{\jmath}$
2. Find the unit tangent vector to the curve $\vec{r}(t)=\mathrm{t}^{2} \vec{\imath}+\mathrm{t}^{3} \vec{\jmath}$ at the point where $\mathrm{t}=2$
3. Define gradient of a function $f(x, y, z)$.
4. If $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{x}^{2} \vec{\imath}-2 \vec{\jmath}+\mathrm{yz} \vec{k}$ find $\operatorname{curl}(\mathrm{F})$.
5. State " Divergence theorem"
6. Prove that $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{e}^{\mathrm{y}} \vec{\imath}+\mathrm{xe}^{\mathrm{y}} \vec{\jmath}$ represents a conservative vector field on the XYplane
7. Evaluate the line integral $\int_{c}\left(x^{2}-y\right) d x+x d y$ where c is the circle $\mathrm{x}^{2}+\mathrm{y}^{2}=4$
8. Solve the differential equation $3 \frac{d y}{d x}=\frac{4 x}{y^{2}}$
9. Write the characteristic equation of the ordinary differential equation, $3 \frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}+6 \mathrm{y}=2 \mathrm{x}^{2}$
10. Write the general form of a first order differential equation and its general solution

$$
\text { (10 } \times 1=10 \text { Marks) }
$$

P.T.O.

SECTION - B

Answer any EIGHT questions / problems, not exceeding a paragraph.
11. Find the angle between the tangent lines of the curves $\vec{r}(t)=t^{2} \vec{\imath}+t \vec{\jmath}+3 t^{3} \vec{k}$ and

$$
\vec{s}(t)=(\mathrm{t}-1) \vec{\imath}+\frac{t^{2}}{4} \vec{\jmath}+(5-\mathrm{t}) \vec{k} \text { the point }(1,1,3)
$$

12. Verify whether $\vec{r}(t)=t e^{-t} \vec{\imath}+\left(\mathrm{t}^{2}-2 \mathrm{t}\right) \vec{\jmath}+\cos \pi t \vec{k} \quad$ is a smooth curve
13. Find the position and velocity of a particle whose acceleration is given by

$$
\vec{a}(t)=\operatorname{sint} \vec{\imath}+\operatorname{cost} \vec{\jmath}+e^{t} \vec{k} \text { with } \vec{v}(0)=\vec{k} \text { and } \vec{r}(0)=-\vec{\imath}+\vec{k}
$$

14. Find the gradient of $\mathrm{f}(\mathrm{x}, \mathrm{y})=\left(\mathrm{x}^{2}+\mathrm{xy}\right)^{3}$ at the point $(-1,-1)$
15. If $\vec{r}(t)=\mathrm{x} \vec{\imath}+\mathrm{y} \vec{\jmath}+z \vec{k}$, prove that $\nabla($ IIrII $)=\frac{r}{\text { IrII }}$.
16. Evaluate the line integral $\int_{c}(3 x+2 y) d x+(2 \mathrm{x}-\mathrm{y})$ dy along the line segment from $(0,0)$ to $(1,1)$.
17. State Green's theorem for a simply connected plane region.
18. Find the work performed by a vector field \vec{F} on a particle around a smooth curve C using Stokes theorem.
19. Find the general solution of the differential equation $\mathrm{y}^{\mathrm{I}}=\frac{y}{x+y}$
20. Solve; $x y^{1}=\frac{y^{2}}{x}+y$
21. Find two independent solution of the differential equation $\frac{d^{2} y}{d x^{2}}+y=0$
22. Solve: $y^{I I}-y^{I}-6 y=0$

SECTION - C

Short essay type problems : Answer any SIX questions.

23. Find the radius of curvature of $\vec{r}(t)=e^{t} \operatorname{cost} \vec{\imath}+e^{t} \operatorname{sint} \vec{\jmath}+e^{t} \vec{k}$ at $t=0$
24. Find the directional derivative of $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\frac{y}{x+y}$ at $\mathrm{P}(2,1,-1)$ in the direction of $\overrightarrow{P Q}$ where $\mathrm{Q}=(-1,2,0)$
25. Find the work done by the force field $\vec{F}(x, y)=x y \vec{\imath}+y z \vec{\jmath}+x z \vec{k}$ along the curve $\vec{r}(t)=\mathrm{t} \vec{\imath}+t^{2} \vec{\jmath}+t^{3} \vec{k}$ when $0 \leq \mathrm{t} \leq 1$.
26. Evaluate $\int_{c} 3 \mathrm{x} y d x+2 x y d y$ using Green's theorem where C is the rectangle bounded by $\mathrm{x}=-2, \mathrm{x}=4, \mathrm{y}=1$ and $\mathrm{y}=2$.
27. Evaluate the surface integral $\iint_{\sigma} f(x, y, z) d S$ where $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{x}-\mathrm{y}-\mathrm{z}$ and σ is the portion of the plane $\mathrm{x}+\mathrm{y}=1$ in the first octant between $\mathrm{z}=0$ and $\mathrm{z}=1$.
28. Find the flux of $\vec{F}(x y)=x^{3} \vec{\imath}+y^{3} \vec{\jmath}+z^{3} \vec{k}$ across the surface of the cylindrical solid bounded by $\mathrm{x}^{2}+\mathrm{y}^{2}=4, \mathrm{z}=0, \& \mathrm{z}=3$ using divergence theorem.
29. Solve the intial value problem $y^{11}-2 y^{1}+2 y=0$ with $y(0)=6 \& y^{1}(0)=1$.
30. Find the particular integral of $y^{11}+2 y^{1}-3 y=4 e^{2 x}$.
31. Solve: $y^{1}+x y=x y^{2}$
($6 \times 4=24$ Marks)

SECTION - D

Long essay type problems : Answer any TWO questions.
32. a) Find the arc length of the curve $\vec{r}(\mathrm{t})=(3 \cos \mathrm{t}) \vec{\imath}+(3 \sin \mathrm{t}) \vec{\jmath}+\mathrm{t} \vec{k}, 0 \leq \mathrm{t} \leq 2 \pi$.
b) Find the distance travelled and displacement of a particle from time $t=1$ to $t=5$ whose position vector at ' t ' is given by $\vec{r}(\mathrm{t})=(4 \cos \pi \mathrm{t}) \vec{\imath}+(4 \sin \pi \mathrm{t}) \vec{\jmath}+\mathrm{t} \vec{k}$.
33. a) Find) $\nabla .(\mathrm{F} \times \mathrm{G})$ if $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=2 \mathrm{x} \vec{\imath}+\vec{\jmath}+4 \mathrm{y} \vec{k}$ and $\mathrm{G}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{x} \vec{\imath}+\mathrm{y} \vec{\jmath}-\mathrm{z} \vec{k}$.
b) Show that $\vec{F}(\mathrm{x}, \mathrm{y})=\left(2 \mathrm{xy}^{3}\right) \vec{\imath}+\left(1+3 \mathrm{x}^{2} \mathrm{y}^{2}\right) \vec{\jmath}$ is a conservative vector field on the xy plane. Find the potential function corresponding to \vec{F}.
34. Verify Stoke's theorem for $\vec{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{x} \vec{\imath}+\mathrm{y} \vec{\jmath}+\mathrm{z} \vec{k}$ where σ is the upper hemisphere $\mathrm{z}=\sqrt{a^{2}-x^{2}-y^{2}}$ (upward orientation).
35. a) Find the orthogonal trajectories of the family of curves $x^{2}+2 y^{2}=k$.
b) Find the general solution of $y^{11}+4 y=8 x$.
($\mathbf{2} \times \mathbf{1 5}=\mathbf{3 0}$ Marks)

$$
\int * \int *
$$

