

MAR IVANIOS COLLEGE (AUTONOMOUS) THIRUVANANTHAPURAM

Reg. No. :....

Name :....

Max. Marks: 80

Third Semester B.Sc. Degree Examination, November 2016 First Degree Programme under CBCSS

Complementary Course: Mathematics – III (for Chemistry and Physics)

AUMM331.2b/ AUMM331.2d: Vectors and Differential Equations

Time: 3 Hours

SECTION – A

Answer ALL questions / problems in one or two sentences.

- 1. Find $\vec{r}^{1}(0)$ if $\vec{r}(t) = (3 \sinh i (2t) j$
- 2. Find the unit tangent vector to the curve $\vec{r}(t) = t^2 \vec{i} + t^3 \vec{j}$ at the point where t = 2
- 3. Define gradient of a function f(x,y,z).
- 4. If $F(x,y,z) = x^2 \vec{\imath} 2\vec{j} + yz\vec{k}$ find curl(F).
- 5. State "Divergence theorem"
- 6. Prove that $F(x,y,z) = e^{y} \vec{i} + xe^{y} \vec{j}$ represents a conservative vector field on the XYplane
- 7. Evaluate the line integral $\int_c (x^2 y) dx + x dy$ where c is the circle $x^2 + y^2 = 4$
- 8. Solve the differential equation $3 \frac{dy}{dx} = \frac{4x}{y^2}$
- 9. Write the characteristic equation of the ordinary differential equation,

$$3\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = 2x^2$$

10. Write the general form of a first order differential equation and its general solution

 $(10 \times 1 = 10 \text{ Marks})$

1577

SECTION – B

Answer any EIGHT questions / problems, not exceeding a paragraph.

11. Find the angle between the tangent lines of the curves $\vec{r}(t) = t^2 \vec{\iota} + t \vec{j} + 3t^3 \vec{k}$ and

$$\vec{s}(t) = (t-1)\vec{i} + \frac{t^2}{4}\vec{j} + (5-t)\vec{k}$$
 the point (1, 1, 3)

- 12. Verify whether $\vec{r}(t) = te^{-t}\vec{\iota} + (t^2 2t)\vec{j} + cos\pi t\vec{k}$ is a smooth curve
- 13. Find the position and velocity of a particle whose acceleration is given by $\vec{a}(t) = \sin t \vec{i} + \cos t \vec{j} + e^t \vec{k}$ with $\vec{v}(0) = \vec{k}$ and $\vec{r}(0) = -\vec{i} + \vec{k}$
- 14. Find the gradient of $f(x,y) = (x^2 + xy)^3$ at the point (-1, -1)
- 15. If $\vec{r}(t) = x \vec{i} + y \vec{j} + z \vec{k}$, prove that $\nabla(\text{IIrII}) = \frac{r}{IIrII}$.
- 16. Evaluate the line integral $\int_c (3x + 2y) dx + (2x y) dy$ along the line segment from (0, 0) to (1, 1).
- 17. State Green's theorem for a simply connected plane region.
- 18. Find the work performed by a vector field \vec{F} on a particle around a smooth curve C using Stokes theorem.
- 19. Find the general solution of the differential equation $y^{I} = \frac{y}{x+y}$
- 20. Solve; $xy^{I} = \frac{y^{2}}{x} + y$
- 21. Find two independent solution of the differential equation $\frac{d^2y}{dx^2} + y=0$
- 22. Solve: $y^{II} y^{I} 6y = 0$

 $(8 \times 2 = 16 \text{ Marks})$

SECTION – C

Short essay type problems : Answer any SIX questions.

- 23. Find the radius of curvature of $\vec{r}(t) = e^t \cot t + e^t \sin t \vec{j} + e^t \vec{k}$ at t = 0
- 24. Find the directional derivative of $f(x, y, z) = \frac{y}{x+y}$ at P(2,1,-1) in the direction of \overrightarrow{PQ} where Q = (-1,2,0)
- 25. Find the work done by the force field $\vec{F}(x, y) = xy \vec{i} + yz \vec{j} + xz \vec{k}$ along the curve $\vec{r}(t) = t \vec{i} + t^2 \vec{j} + t^3 \vec{k}$ when $0 \le t \le 1$.

- 26. Evaluate $\int_c 3xy \, dx + 2xy \, dy$ using Green's theorem where C is the rectangle bounded by x = -2, x = 4, y = 1 and y = 2.
- 27. Evaluate the surface integral $\iint_{\sigma} f(x, y, z) dS$ where f(x, y, z) = x y z and σ is the portion of the plane x + y = 1 in the first octant between z = 0 and z = 1.
- 28. Find the flux of $\vec{F}(xy) = x^3\vec{\iota} + y^3\vec{j} + z^3\vec{k}$ across the surface of the cylindrical solid bounded by $x^2 + y^2 = 4$, z = 0, & z = 3 using divergence theorem.
- 29. Solve the initial value problem $y^{ll} 2y^{l} + 2y = 0$ with $y(0) = 6 \& y^{l}(0) = 1$.
- 30. Find the particular integral of $y^{ll} + 2y^l 3y = 4 e^{2x}$.
- 31. Solve: $y^1 + xy = xy^2$

 $(6 \times 4 = 24 \text{ Marks})$

SECTION – D

Long essay type problems : Answer any TWO questions.

- 32. a) Find the arc length of the curve \vec{r} (t) = $(3\cos t)\vec{\iota} + (3\sin t)\vec{j} + t\vec{k}, 0 \le t \le 2\pi$.
 - b) Find the distance travelled and displacement of a particle from time t = 1 to t = 5 whose position vector at 't' is given by \vec{r} (t) = $(4\cos \pi t) \vec{i} + (4\sin \pi t) \vec{j} + t \vec{k}$.
- 33. a) Find) ∇ . (F × G) if F(x,y,z) = 2x $\vec{i} + \vec{j} + 4y \vec{k}$ and G (x,y,z) = x $\vec{i} + y \vec{j} z \vec{k}$.
 - b) Show that $\vec{F}(x,y) = (2xy^3)\vec{i} + (1+3x^2y^2)\vec{j}$ is a conservative vector field on the xy plane. Find the potential function corresponding to \vec{F} .
- 34. Verify Stoke's theorem for $\vec{F}(x,y,z) = x \vec{i} + y \vec{j} + z \vec{k}$ where σ is the upper hemisphere $z = \sqrt{a^2 x^2 y^2}$ (upward orientation).
- 35. a) Find the orthogonal trajectories of the family of curves $x^2 + 2y^2 = k$.
 - b) Find the general solution of $y^{ll} + 4y = 8x$.

 $(2 \times 15 = 30 \text{ Marks})$