MAR IVANIOS COLLEGE (AUTONOMOUS) THIRUVANANTHAPURAM

Reg. No. :
Name :

Third Semester B.Sc. Degree Examination, November 2016 First Degree Programme under CBCSS
 Complementary Course: Mathematics - III (for Physics)
 AUMM331.2d: Differential Equations, Theory of Equations and Theory of Matrices
 (for 2014 Admissions - Improvement Only)

Time: $\mathbf{3}$ Hours
Max. Marks: 80

SECTION - A

Answer ALL questions / problems in one or two sentences.

1. Solve the differential equation $x d y+y d x=0$.
2. Write the standard form of a second order linear differential equation in two variables.
3. Write the characteristic equation of the differential equation, $\left(\mathrm{D}^{2}+2 \mathrm{D}+1\right) y=e^{x}$.
4. Define rank of a matrix.
5. If $1,2,3$ are the eigen values of a matrix A then find the eigen values of A^{t}.
6. Write the echelon form of the matrix $\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$.
7. Form a quadratic equation with integer coefficients given that one of whose roots is $1+i$.
8. Find a column basis for the row space of the matrix $\left[\begin{array}{lll}1 & 3 & 0 \\ 0 & 0 & 1\end{array}\right]$.
9. If $4,2,3$ are the roots of the equation $a x^{3}+b x+c=0$. Find an equation whose roots are $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$.
10. Find the number of imaginary roots of the equation $x^{3}+2 x+3=0$.

SECTION - B

Answer any EIGHT questions / problems, not exceeding a paragraph.
11. Solve the differential equation $\left(1+x^{2}\right) d y+\left(1+y^{2}\right) d x=0$.
12. Solve $y^{\prime \prime}+9 y=e^{x}$.
13. Find the condition that the differential equation $(a x+b y) d x+(k x+l y) d x=0$ is exact.
14. Solve the equation $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=0, y(0)=4, y^{\prime}(0)=-5$.
15. Find the reduced form of the matrix $\left(\begin{array}{rrr}-3 & 3 & 3 \\ 0 & 2 & 2\end{array}\right)$.
16. Solve the system of equations $x+y+z=0 ; x-y-z=0$.
17. Test whether $\left(\begin{array}{l}6 \\ 0 \\ 0\end{array}\right)$ is an eigen vector or not of the matrix $\left(\begin{array}{rrr}1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & -1\end{array}\right)$.
18. Solve the equation $x^{4}-2 x^{3}-21 x^{2}+22 x+40=0$, given that the roots are in arithmetic progression.
19. If α, β, γ are the roots of the equation $x^{3}-2 x^{2}+3=0$, find the value of $\alpha^{2}+\beta^{2}+\gamma^{2}$.
20. Solve $2 x^{3}+x^{2}-7 x-6=0$, given that difference between two of its roots is 3 .
21. Find a quartic equation with integer coefficients having $1-i$ and $1+\sqrt{2}$ as two of its roots.
22. If $A=\left[\begin{array}{ll}1 & 0 \\ 3 & 5\end{array}\right]$, then Show that, $A^{2}+6 A+5 I=0$, where I is the unit matrix of order 2 . ($8 \times 2=16$ Marks)

SECTION - C

Short essay type problems : Answer any SIX questions.
23. Solve $\left(D^{2}-4 D\right) y=10 \cos x+5 \sin x$.
24. Solve $\left(x^{2}+x y\right) \frac{d y}{d x}=x^{2}+y^{2}$.
25. Find a family of curves which are orthogonal to the family of curves $x^{2}+(y-c)^{2}=c^{2}$.
26. Using Newton - Raphson method, find a real root near 1.5 to four decimal places of the equation, $2 x^{3}-7 x^{2}-x+2=0$.
27. Find a positive root of the equation $x^{2}-3=0$ to two places of decimals using bisection method.
28. Solve $4 x^{4}-4 x^{3}-25 x^{2}+x+6=0$, given that the difference between two of its roots is unity.
29. Test the consistency and solve: $2 x+3 y+z=6 ; x-y+z=1,3 x-y-z=1$.
30. Find the eigen vectors of the matrix $\left(\begin{array}{rrr}-2 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & -1\end{array}\right)$.
31. Solve $\left(D^{2}-3 D+2\right) y=x+\sin x$.
($6 \times 4=24$ Marks)

SECTION - D

Long essay type problems : Answer any TWO questions.
32. Show that the equation $e^{2 x}=25 x-20$ has two real roots and find the larger root correct to four significant figures.
33. Solve the following equations :
i). $\left(x^{2} D^{2}+x D-4\right) y=0$.
ii). $(3 x+2)^{2} \frac{d^{2} y}{d x^{2}}+3(3 x+2) \frac{d y}{d x}-36 y=3 x^{2}+4 x+7$.
34. Solve:
i). $x^{2} y^{\prime \prime}-x y^{\prime}+y=\sin (\ln x)$
ii). $\left(D^{2}-3 D+2\right) y=e^{3 x} \sin x$.
35. Diagonalise the matrix $\left(\begin{array}{rrr}-2 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & -2\end{array}\right)$, if possible.
($\mathbf{2} \times \mathbf{1 5}=\mathbf{3 0}$ Marks)

$$
\int * \int *
$$

