

MAR IVANIOS COLLEGE (AUTONOMOUS) THIRUVANANTHAPURAM

Reg. No. :....

Name :....

Fifth Semester B.Sc. Degree Examination, November 2016 First Degree Programme under CBCSS Core Course: Mathematics – VIII AUMM545: Abstract Algebra I

Time: 3 Hours

Max. Marks: 80

SECTION – A

Answer ALL questions / problems in one or two sentences.

- 1. Are the binary structures $(\mathbb{Q}, +)$ and $(\mathbb{R}, +)$ isomorphic, Justify?
- 2. On \mathbb{Q} determine whether the binary operation * given by a*b=a-b is associative.
- 3. Is \mathbb{R}^* set of non zero real numbers together with a binary operation * defined by $a * b = \frac{a}{b}$ a group? Justify your answer.
- 4. Find the order of the cyclic subgroup of \mathbb{Z}_4 generated by 3.
- 5. Give an example of a finite group that is not cyclic.
- 6. Express $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 2 & 6 & 3 & 7 & 4 & 5 & 1 \end{pmatrix}$ as a product of transpositions.
- 7. Find all orbits of the permutation $\sigma: \mathbb{Z} \to \mathbb{Z}$ where $\sigma(n) = n + 2$.
- 8. Find the index of < 2 > in Z_{12} .
- 9. According to division algorithm find the remainder *r* when -38 is divided by 7.
- 10. Find the order of (8, 4, 10) in the group $Z_{12} \times Z_{60} \times Z_{24}$.

 $(10 \times 1 = 10 \text{ Marks})$

SECTION – B

Answer any **EIGHT** questions / problems, not exceeding a paragraph.

11. Prove that if * is an associative and commutative binary operation on a set S, then (a * b) * (c * d) = [(d * c) * a] * b for all a, b, c, d ∈ S, assuming the associative law only for triples.

1514

- 12. If $\phi: S \to S'$ is an isomorphism of (S,*) with (S',*') and *e* is an identity element *S* then prove that $\phi(e)$ is the identity element of for the binary operation *' on S'.
- 13. Show that Q^+ with the operation * defined by $a * b = \frac{ab}{2}$ is a group.
- 14. Prove that the identity element and inverse elements are unique in a group.
- 15. Prove that if *G* is an abelian group, written multiplicative, with identity element *e*, then all elements *x* of G satisfying the equation $x^2 = e$ form a sub group *H* of *G*.
- 16. Show that the collection of permutations S_A of a non empty set A is a group under permutation multiplication.
- 17. Show that every permutation σ of a finite set is a product of disjoint cycles.
- 18. If $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2 \end{pmatrix}$ and $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5 \end{pmatrix}$ in S_6 compute $\sigma^{-1}\tau\sigma$.
- 19. Find the product of cycles (1,2)(4, 7, 8)(2,1)(7,2,8,1,5) that are permutations of $\{1, 2, 3, 4, 5, 6, 7, 8\}$.
- 20. Let *H* be a subgroup of *G*. Prove that the relation \sim_R defined on *G* by $a \sim_R b$ if and only if $ab^{-1} \in H$ is an equivalence relation on *G*.
- 21. Prove that every cyclic group is abelian.
- 22. Find all cosets of the subgroup of < 4 > of Z_{12} .

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - C

Short essay type problems: Answer any SIX questions.

- 23. Define isomorphism of binary structures. Show that the binary structure $(\mathbb{R}, +)$ is isomorphic to the structure $(\mathbb{R}^+, .)$ where the operations are respectively usual addition and multiplication.
- 24. Show that a non empty subset *H* of a group *G* is a subgroup of *G* if and only if $ab^{-1} \in H$ for all $a, b \in H$.
- 25. Show that if *G* is a group with binary operation *, and if $a, b \in G$, then the linear equations a * x = b and y * a = b have unique solutions $x, y \in G$.
- 26. Prove that for any group *G*, $H_G = \{x \in G | xs = sx \text{ for all } s \in G\}$ is an abelian subgroup of *G*.

- 27. Show that the sub group of a cyclic group is cyclic.
- 28. Prove that no permutation in S_n can be expressed both as a product of an even number of transpositions and as a product of an odd number of transpositions.
- 29. If $n \ge 2$, prove that the collection of all even permutations of $\{1, 2, ..., n\}$ forms a subgroup of the symmetric group S_n of order $\frac{n!}{2}$.
- 30. State and prove Lagrange's Theorem. Deduce that every group of prime order is cyclic.
- 31. Suppose H and K are subgroups of a group G such that $K \le H \le G$ and suppose (H:K) and (G:H) are both finite. Prove that (G:K) is finite and (G:K) = (G:H)(H:K).

 $(6 \times 4 = 24 \text{ Marks})$

SECTION – D

Long essay type problems: Answer any **TWO** questions.

- 32. a) Define the permutation group S_3 . Find all subgroups of S_3 and draw the subgroup diagram.
 - b) Let G be a cyclic group. Show that if the order of G is infinite then G is isomorphic to (Z, +) and if G has a finite order n, then G is isomorphic to $(Z_n, +_n)$.
- 33. a) Let *G* be a cyclic group with *n* elements and generated by *a*. Let $b \in G$ and let $b = a^s$. Then *b* generates a cyclic subgroup *H* of *G* containing *n/d* elements, where *d* is the greatest common divisor of *n* and *s*.
 - b) Show that if a is a generator of a finite cyclic group G of order n, then the other generators of G are the elements of the form a^r , where *r* is relatively prime to *n*.
- 34. a) Let G and G' be groups and let φ: G → G' be a one-to-one function such that φ(xy) = φ(x)φ(y) for all x, y ∈ G. Then prove that φ(G) is a subgroup of G' and φ provides an isomorphism of G with φ(G).
 - b) State and prove Cayley's theorem.

1514

- 35. a) Let G_1, G_2, \dots, G_n be groups. For (a_1, a_2, \dots, a_n) and (b_1, b_2, \dots, b_n) in $\prod_{i=1}^n G_i$, define $(a_1, a_2, \dots, a_n)(b_1, b_2, \dots, b_n) = (a_1b_1, a_2b_2, \dots, a_nb_n)$. Then prove that $\prod_{i=1}^n G_i$ is a group under this binary operation.
 - b) Prove that $Z_m \times Z_n$ is cyclic and is isomorphic to Z_{mn} if and only if g.c.d(m, n) = 1.

 $(2 \times 15 = 30 \text{ Marks})$

∫*∫*∫*∫*∫*∫*∫*∫*∫*∫*∫*∫*∫*∫*