MAR IVANIOS COLLEGE (AUTONOMOUS) THIRUVANANTHAPURAM

Reg. No. :
Name :

Fifth Semester B.Sc. Degree Examination, November 2016
 First Degree Programme under CBCSS
 Core Course: Mathematics - VIII

AUMM545: Abstract Algebra I

Time: $\mathbf{3}$ Hours
Max. Marks: 80

SECTION - A

Answer ALL questions / problems in one or two sentences.

1. Are the binary structures $(\mathbb{Q},+)$ and $(\mathbb{R},+)$ isomorphic, Justify ?
2. \quad On \mathbb{Q} determine whether the binary operation $*$ given by $a * b=a-b$ is associative.
3. Is \mathbb{R}^{*} set of non zero real numbers together with a binary operation * defined by $a * b=a / b$ a group? Justify your answer.
4. Find the order of the cyclic subgroup of \mathbb{Z}_{4} generated by 3 .
5. Give an example of a finite group that is not cyclic.
6. Express $\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 2 & 6 & 3 & 7 & 4 & 5 & 1\end{array}\right)$ as a product of transpositions.
7. Find all orbits of the permutation $\sigma: \mathbb{Z} \rightarrow \mathbb{Z}$ where $\sigma(n)=n+2$.
8. Find the index of $<2>$ in Z_{12}.
9. According to division algorithm find the remainder r when -38 is divided by 7 .
10. Find the order of $(8,4,10)$ in the group $Z_{12} \times Z_{60} \times Z_{24}$.

$$
\text { (} 10 \times 1=10 \text { Marks })
$$

SECTION - B

Answer any EIGHT questions / problems, not exceeding a paragraph.
11. Prove that if $*$ is an associative and commutative binary operation on a set S, then $(a * \mathrm{~b}) *(c * d)=[(d * c) * a] * b$ for all $a, b, c, d \in S$, assuming the associative law only for triples.

1514

12. If $\phi: S \rightarrow S^{\prime}$ is an isomorphism of $(S, *)$ with $\left(S^{\prime}, *^{\prime}\right)$ and e is an identity element S then prove that $\phi(e)$ is the identity element of for the binary operation $*^{\prime}$ on S^{\prime}.
13. Show that Q^{+}with the operation $*$ defined by $a * b=\frac{a b}{2}$ is a group.
14. Prove that the identity element and inverse elements are unique in a group.
15. Prove that if G is an abelian group, written multiplicative, with identity element e, then all elements x of G satisfying the equation $x^{2}=e$ form a sub group H of G.
16. Show that the collection of permutations S_{A} of a non - empty set A is a group under permutation multiplication.
17. Show that every permutation σ of a finite set is a product of disjoint cycles.
18. If $\sigma=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2\end{array}\right)$ and $\tau=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5\end{array}\right)$ in S_{6} compute $\sigma^{-1} \tau \sigma$.
19. Find the product of cycles $(1,2)(4,7,8)(2,1)(7,2,8,1,5)$ that are permutations of $\{1,2,3,4,5,6,7,8\}$.
20. Let H be a subgroup of G. Prove that the relation \sim_{R} defined on G by $a \sim_{R} b$ if and only if $a b^{-1} \in H$ is an equivalence relation on G.
21. Prove that every cyclic group is abelian.
22. Find all cosets of the subgroup of $\langle 4\rangle$ of Z_{12}.
($8 \times 2=16$ Marks $)$

SECTION - C

Short essay type problems: Answer any SIX questions.
23. Define isomorphism of binary structures. Show that the binary structure $(\mathbb{R},+)$ is isomorphic to the structure $\left(\mathbb{R}^{+},.\right)$where the operations are respectively usual addition and multiplication.
24. Show that a non - empty subset H of a group G is a subgroup of G if and only if $a b^{-1} \in H$ for all $a, b \in H$.
25. Show that if G is a group with binary operation *, and if $a, b \in G$, then the linear equations $a * x=b$ and $y * a=b$ have unique solutions $x, y \in G$.
26. Prove that for any group $G, H_{G}=\{x \in G \mid x s=s x$ for all $s \in G\}$ is an abelian subgroup of G.
27. Show that the sub group of a cyclic group is cyclic.
28. Prove that no permutation in S_{n} can be expressed both as a product of an even number of transpositions and as a product of an odd number of transpositions.
29. If $\mathrm{n} \geq 2$, prove that the collection of all even permutations of $\{1,2, \ldots, \mathrm{n}\}$ forms a subgroup of the symmetric group S_{n} of order $\frac{n!}{2}$.
30. State and prove Lagrange's Theorem. Deduce that every group of prime order is cyclic.
31. Suppose H and K are subgroups of a group G such that $K \leq H \leq G$ and suppose $(H: K)$ and $(G: H)$ are both finite. Prove that $(G: K)$ is finite and $(G: K)=$ (G:H)(H:K).

SECTION - D

Long essay type problems: Answer any TWO questions.

32. a) Define the permutation group S_{3}. Find all subgroups of S_{3} and draw the subgroup diagram.
b) Let G be a cyclic group. Show that if the order of G is infinite then G is isomorphic to $(\mathrm{Z},+)$ and if G has a finite order n , then G is isomorphic to $\left(Z_{n},+_{n}\right)$.
33. a) Let G be a cyclic group with n elements and generated by a. Let $b \in G$ and let $b=a^{s}$. Then b generates a cyclic subgroup H of G containing n / d elements, where d is the greatest common divisor of n and s.
b) Show that if a is a generator of a finite cyclic group G of order n , then the other generators of G are the elements of the form a^{r}, where r is relatively prime to n.
34. a) Let G and G^{\prime} be groups and let $\phi: G \rightarrow G^{\prime}$ be a one-to-one function such that $\phi(x y)=\phi(x) \phi(y)$ for all $x, y \in G$. Then prove that $\phi(G)$ is a subgroup of G^{\prime} and ϕ provides an isomorphism of G with $\phi(G)$.
b) State and prove Cayley's theorem.

1514

35. a) Let $G_{1}, G_{2}, \ldots, G_{n}$ be groups. For $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ in $\prod_{i=1}^{n} G_{i}$, define $\left(a_{1}, a_{2}, \ldots, a_{n}\right)\left(b_{1}, b_{2}, \ldots, b_{n}\right)=\left(a_{1} b_{1}, a_{2} b_{2}, \ldots, a_{n} b_{n}\right)$. Then prove that $\prod_{i=1}^{n} G_{i}$ is a group under this binary operation.
b) Prove that $Z_{m} \times Z_{n}$ is cyclic and is isomorphic to $Z_{m n}$ if and only if $\operatorname{g.c.d}(m, n)=1$.
($2 \times 15=30$ Marks)

$$
\int * \int * \int * \int * \int * \int \pi \iint * \int * \int * \int * \iint * \int * \int *
$$

