

MAR IVANIOS COLLEGE (AUTONOMOUS) THIRUVANANTHAPURAM

Reg. No. :....

Name :....

Fifth Semester B.Sc. Degree Examination, November 2016 First Degree Programme under CBCSS Open Course: Mathematics – I AUMM581: Operations Research

Time: 3 Hours

Max. Marks: 80

SECTION – A

Answer ALL questions / problems in one or two sentences.

- 1. What is a Linear Programming Problem ?
- 2. Identify the objective function of the L.P.P: Maximize $Z = 8x_1 + 6x_2$ subject to $4x_1 + 2x_2 \le 60$, $2x_1 + 4x_2 \le 48$, $x_1, x_2 \ge 0$.
- 3. Is $x_1 = 2$, $x_2 = 1$, a feasible solution of the L.P.P: Minimize $Z = x_1 + 2x_2$ subject to $2x_1 - x_2 \ge 2$, $x_1 + 3x_2 \le 8$; $x_1, x_2 \ge 0$?
- 4. Name any one advantage of simplex method over graphical method in solving a linear programming problem.
- 5. Define a transportation problem.
- 6. Write a necessary and sufficient condition for the existence of a feasible solution to an $m \times n$ transportation problem.
- 7. Write the name of a method used to find the optimal solution of a transportation problem.
- 8. Name a method for solving assignment problem.
- 9. Define an event.
- 10. Name two techniques for Project management.

1515

SECTION – B

Answer any EIGHT questions / problems, not exceeding a paragraph.

- 11. A house wife wishes to mix two types of food F₁ and F₂ in such a way that the vitamin contents of the mixture contain at least 8 units of vitamin A and 11 units of vitamin B. Food F₁ costs Rs. 60/Kg and Food F₂ costs Rs. 80/Kg. Food F₁ contains 3 units/Kg of vitamin A and 5 units/Kg of vitamin B while Food F₂ contains 4 units/Kg of vitamin A and 2 units/Kg of vitamin B. Formulate this problem as a linear programming model to minimize the cost of mixtures.
- 12. What are the basic components of a linear programming problem ?
- 13. Define Slack and Surplus variables ?
- 14. Convert the following constraints into equations:

 $2x_1 + x_2 + 3x_3 \le 2; \quad x_1 - 4x_2 + x_3 \ge 3$

15. Write the following LPP in the standard form:

Maximize $Z = 3x_1 + 2x_2 + 10x_3$

Subject to
$$x_1 + x_2 + 4x_3 \ge 4$$

$$x_1 - x_2 + 2x_3 \le 6$$

$$x_1, x_2, x_3 \ge 0$$

16. Represent the following LPP in matrix – vector notation

Maximize $Z = 2x_1 + 4x_2 - 3x_3 + x_4$

Subject to
$$x_1 + 2x_2 + x_3 + 5x_4 = 10$$

 $x_2 - 2x_3 + x_4 = 7$
 $x_1 + 7x_2 + 3x_3 + x_4 = 2$
 $x_1, x_2, x_3, x_4 \ge 0$

- 17. Write the Linear Programming formulation of a Transportation Problem.
- 18. How does the problem of degeneracy arise in a transportation problem ?
- 19. Use North West Corner method to find an initial basic feasible solution to the following transportation problem:

	\mathbf{W}_1	W_2	W_3	Availability
F_1	16	20	12	200
F ₂	14	8	18	160
F ₃	26	24	16	90
Demand	180	120	150	

- 20. What is an assignment problem ? Explain.
- 21. Give any two applications of CPM or PERT.
- 22. What are the three time considerations in PERT ?

 $(8 \times 2 = 16 \text{ Marks})$

SECTION – C

Short essay type problems: Answer any SIX questions.

23. Use graphical method to solve the following LP problem:

Minimize $Z = 3x_1 + 2x_2$ Subject to $5x_1 + x_2 \ge 10$ $x_1 + x_2 \ge 6$ $x_1 + 4x_2 \ge 12$ $x_1, x_2 \ge 0$

- 24. Solve the following LPP using Simplex Method:
 - Maximize $Z = 7x_1 + 5x_2$ Subject to $x_1 + 2x_2 \le 6$ $4x_1 + 3x_2 \le 12$ $x_1, x_2 \ge 0$
- 25. Determine an initial basic feasible solution to the following transportation problem using North West Corner Rule.

	D ₁	D_2	D_3	D_4	Availability
O ₁	6	4	1	4	14
O_2	8	9	2	7	16
O ₃	4	3	6	2	5
Demand	6	10	15	4	

26. Use Vogel's Method to find an initial basic feasible solution to the following transportation problem:

	D	Е	F	G	Availability
А	11	13	17	14	250
В	16	18	14	10	300
С	21	24	13	10	400
Demand	200	225	275	250	

1515

27. Find an initial basic feasible solution for the following transportation problem using North – West Corner Rule:

	M_1	M ₂	M ₃	M_4	Availability
\mathbf{W}_1	4	6	8	13	500
W_2	13	11	10	8	700
W ₃	14	4	10	13	300
Demand	250	350	650	250	

28. Obtain the optimal assignment of four jobs and four machines when the cost of assignment is given by the following table:

	\mathbf{J}_1	J_2	J_3	\mathbf{J}_4
M_1	12	30	21	15
M_2	18	33	9	31
M ₃	44	25	21	21
M_4	14	30	28	14

29. Use Hungarian method to solve the following assignment problem:

	А	В	С	D
1	10	9	7	8
2	5	8	7	7
3	5	4	6	5
4	2	3	4	5

30. A batch of four jobs can be assigned to five different machines. The setup time for each job on various machines is given by the following table:

	M_1	M ₂	M ₃	M_4	M ₅
J_1	10	11	4	2	8
J_2	7	11	10	14	12
J_3	5	6	9	12	14
J_4	13	15	11	10	7

Find an optimal assignment of jobs to machines which will minimize the total setup time.

31. A project with 5 jobs and with the following job sequence is given. Draw a project network. Write all the paths of the project and hence identify its critical path:

Activity	А	В	С	D	E
Sequence	1-2	1-3	2-4	3-4	4-5
Completion time (days)	3	1	4	2	5
					(

 $(6 \times 4 = 24 \text{ Marks})$

SECTION – D

Long essay type problems: Answer any **TWO** questions.

32. Solve the following LPP:

Maximize $Z = x_1 + 2x_2$ Subject to $x_1 + 2x_2 \le 4$ $x_1 + 7x_2 \le 14$ $x_1 - x_2 \le 1$ $x_1, x_2 \ge 0$

33. Find an initial basic feasible solution for the following transportation problem using any two different methods and critically evaluate the methods:

	M_1	M ₂	M ₃	M_4	Supply
W_1	2	2	2	1	3
W ₂	10	8	5	4	7
W ₃	7	6	6	8	5
Demand	4	3	4	4	

34. The following table gives the activities in a project and other relevant information.

- i) Draw the network of the project.
- ii) Find the forward pass and backward pass.
- iii) Find the critical path and total duration of the project.

	Activity	Sequence	Duration
Α		1-2	10
В		2-3	12
С		2-4	5
D		3-4	6
Е		4-5	3

35. Consider a project consisting of 7 jobs: A, B, ...,G with the following job sequence and time estimates:

Job	Sequence	Optimistic	1	Pessimistic
		time (a)	time (m)	time (b)
А	1-2	2	5	8
В	1-3	6	9	12
С	2-3	3	6	9
D	3-5	1	4	7

Е	3-4	8	8	8
F	4-5	5	14	17
G	5-6	3	12	21

i). Draw the network

ii). Find the average time and variance of each job

(2 × 15 = 30 Marks)

```
∫*∫*∫*∫*∫*∫*∫*∫*∫*∫*∫*∫*∫*∫*∫*j*j*
```