

MAR IVANIOS COLLEGE (AUTONOMOUS) THIRUVANANTHAPURAM

Reg. No. :....

Name :....

Third Semester B.Sc. Degree Examination, November 2015 First Degree Programme under CBCSS Complementary Course: Mathematics – III (for Chemistry) AUMM331.2b: Vector Analysis and Theory of Equations

Time: 3 Hours

Max. Marks: 80

SECTION – A

Answer ALL questions / problems in one or two sentences.

- 1. Find $\lim_{t\to 2} (ti 3j + t^2k)$.
- 2. Let $f(x, y, z) = x^2 + y^2 z$. Find an equation of the level surface that passes through the point (1, -2, 0).
- 3. If $\phi(x, y, z) = x^3 + y^3 + z^3 3xyz$, find gradient of ϕ at (1, -1, 2).
- 4. Evaluate the integral $\int_{C} (3x+2y)dx + (2x-y)dy$ along the line segment *C* from (0, 0) to (1, 1).
- 5. State Stoke's theorem.
- 6. Determine whether $\vec{F}(x, y) = 3y^2i + 6xyj$ is a conservative vector field.
- 7. Let $\vec{F}(x, y)$ be a conservative vector field on a region *D* and *C* a smooth closed curve in *D*. What is the value of $\int_{C} \vec{F} \cdot d\vec{r}$?
- 8. State the fundamental theorem of algebra.
- 9. What is the sum of the four roots of the equation $3x^4 + 2x^3 + 5x^2 + 7x 4 = 0$?
- 10. How many real roots does the equation $2x^2 + 2 = 0$ have ?

$(10 \times 1 = 10 \text{ Marks})$

1157

SECTION – B

Answer any EIGHT questions / problems, not exceeding a paragraph.

11. Find the unit tangent vector to the graph of $\vec{r}(t) = 4\cos t \, i + 4\sin t + 4\sin t \, j + t \, k$ at

the point where $t = \frac{\pi}{2}$.

- 12. Find the velocity and acceleration of a particle moving along the curve x = t, $y = \frac{1}{2}t^2$, $z = \frac{1}{3}t^3$ at time t = 1.
- 13. Find the constants a, b, c such that $\vec{F}(x, y, z) = (x+2y+az)i + (bx-3y-z)j + (4x+cy+2z)k$ is irrotational.
- 14. Prove that $curl(\nabla \varphi) = \vec{0}$, where φ is a scalar function.
- 15. Find the work done by the force field $\vec{F}(x, y) = x^3 y i + (x y) j$ on a particle that moves along the parabola $y = x^2$ from (-2, 4) to (1, 1).
- 16. Find the value of $\int_{(1,2)}^{(4,0)} (3y \, dx + 3x \, dy)$.
- 17. Find a unit normal vector to $r(t) = ti + t^2 j$ at the point where t = 1.
- 18. Find the divergence of the vector field $\vec{F}(x, y, z) = e^{xy}i \cos y \, j + \sin^2 z \, k$.
- 19. Solve the equation $2x^3 + 3x^2 11x 6 = 0$, given that the three roots form an arithmetic sequence.
- 20. Show that $x^7 3x^4 + 2x^3 1 = 0$ has at least four imaginary roots.
- 21. State Descarte's rule of signs.
- 22. Solve the equation $x^3 5x^2 8x + 12 = 0$, given that the sum of two of the roots is 7.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION – C

Short essay type problems : Answer any SIX questions.

- 23. Find the curvature of the curve $\vec{r}(t) = e^t i + e^{-t} j + t k$ at the point where t = 0.
- 24. Find the directional derivative of $f(x, y, z) = x^3 z yx^2 + z^2$ at the point (2, -1, 1) in the direction of the vector $\vec{a} = 3i j + 2k$.

25. If $\vec{r} = xi + y \ j + z \ k$ and $r = |\vec{r}|$, then show that gradient of $\left(\frac{1}{r}\right) = -\frac{\vec{r}}{r^3}$.

- 26. Using Green's theorem, find the work done by the force field $\vec{F}(x, y) = (x^2 y^2)i + x j$, on a particle that travel once around the circle $x^2 + y^2 = 9$ in the counterclockwise direction.
- 27. Use the Divergence theorem to find the outward flux of $\vec{F}(x, y, z) = (x^2 + y)i + z^2j + (e^y z)k$, across the surface of the rectangular solid bounded by the coordinate planes and the planes x = 3, y = 1 and z = 2.
- 28. Evaluate $\iiint_G (3x^2 + 3y^2 + 2z) dV$ where *G* is the region enclosed by the circular cylinder $x^2 + y^2 = 9$ and the planes z = 0 and z = 2.
- 29. Find a real root of the equation $x^3 2x 5 = 0$ using bisection method.
- 30. Solve the equation $x^3 10x^2 + 8x + 64 = 0$, given that the product of two of the roots is the negative of the third.
- 31. Explain the Newton Raphson method of finding a solution to the equation f(x) = 0.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION – D

Long essay type problems : Answer any **TWO** questions.

- 32. If $\vec{F}(x, y, z) = xy^2 i 3yz j + xyk$, find $\nabla \times (\nabla \times \vec{F})$ and $\nabla . (\nabla \times \vec{F})$.
- 33. Evaluate the surface integral $\iint_{\sigma} y^2 z^2 dS$ where σ is the part of the cone $z = \sqrt{x^2 + y^2}$ that lies between the planes z = 1 and z = 2.
- 34. The equation $x^3 3x 4 = 0$ has a root between x = 1 and x = 3. Using Newton Raphson method, evaluate this root to four significant digits.
- 35. Verify Stoke's theorem for the vector field $\vec{F}(x, y, z) = 2z i + 3x j + 5y k$, taking σ to be the portion of the paraboloid $z = 4 x^2 y^2$ for which $z \ge 0$ with upward orientation and *C* to be the positively oriented circle $x^2 + y^2 = 4$ that forms the boundary of σ in the *xy* plane.

$$(2 \times 15 = 30 \text{ Marks})$$