

MAR IVANIOS COLLEGE (AUTONOMOUS) THIRUVANANTHAPURAM

Reg. No. :.
Name:

Third Semester B.Sc. Degree Examination, November 2015 First Degree Programme under CBCSS
 Complementary Course: Mathematics - III (for Chemistry)
 AUMM331.2b: Vector Analysis and Theory of Equations

Time: $\mathbf{3}$ Hours
Max. Marks: 80

SECTION - A

Answer ALL questions / problems in one or two sentences.

1. Find $\lim _{t \rightarrow 2}\left(t i-3 j+t^{2} k\right)$.
2. Let $f(x, y, z)=x^{2}+y^{2}-z$. Find an equation of the level surface that passes through the point $(1,-2,0)$.
3. If $\phi(x, y, z)=x^{3}+y^{3}+z^{3}-3 x y z$, find gradient of ϕ at $(1,-1,2)$.
4. Evaluate the integral $\int_{C}(3 x+2 y) d x+(2 x-y) d y$ along the line segment C from $(0,0)$ to $(1,1)$.
5. State Stoke's theorem.
6. Determine whether $\vec{F}(x, y)=3 y^{2} i+6 x y j$ is a conservative vector field.
7. Let $\vec{F}(x, y)$ be a conservative vector field on a region D and C a smooth closed curve in D. What is the value of $\int_{C} \vec{F} . d \vec{r}$?
8. State the fundamental theorem of algebra.
9. What is the sum of the four roots of the equation $3 x^{4}+2 x^{3}+5 x^{2}+7 x-4=0$?
10. How many real roots does the equation $2 x^{2}+2=0$ have ?
($10 \times 1=10$ Marks)
P.T.O.

SECTION - B

Answer any EIGHT questions / problems, not exceeding a paragraph.
11. Find the unit tangent vector to the graph of $\vec{r}(t)=4 \cos t i+4 \sin t+4 \sin t j+t k$ at the point where $t=\frac{\pi}{2}$.
12. Find the velocity and acceleration of a particle moving along the curve $x=t, y=\frac{1}{2} t^{2}, z=\frac{1}{3} t^{3}$ at time $t=1$.
13. Find the constants $\mathrm{a}, \mathrm{b}, \mathrm{c}$ such that

$$
\vec{F}(x, y, z)=(x+2 y+a z) i+(b x-3 y-z) j+(4 x+c y+2 z) k \text { is irrotational. }
$$

14. Prove that $\operatorname{curl}(\nabla \varphi)=\overrightarrow{0}$, where φ is a scalar function.
15. Find the work done by the force field $\vec{F}(x, y)=x^{3} y i+(x-y) j$ on a particle that moves along the parabola $y=x^{2}$ from $(-2,4)$ to $(1,1)$.
16. Find the value of $\int_{(1,2)}^{(4,0)}(3 y d x+3 x d y)$.
17. Find a unit normal vector to $r(t)=t i+t^{2} j$ at the point where $t=1$.
18. Find the divergence of the vector field $\vec{F}(x, y, z)=e^{x y} i-\cos y j+\sin ^{2} z k$.
19. Solve the equation $2 x^{3}+3 x^{2}-11 x-6=0$, given that the three roots form an arithmetic sequence.
20. Show that $x^{7}-3 x^{4}+2 x^{3}-1=0$ has at least four imaginary roots.
21. State Descarte's rule of signs.
22. Solve the equation $x^{3}-5 x^{2}-8 x+12=0$, given that the sum of two of the roots is 7 .
($8 \times 2=16$ Marks)

SECTION - C

Short essay type problems : Answer any SIX questions.
23. Find the curvature of the curve $\vec{r}(t)=e^{t} i+e^{-t} j+t k$ at the point where $t=0$.
24. Find the directional derivative of $f(x, y, z)=x^{3} z-y x^{2}+z^{2}$ at the point $(2,-1,1)$ in the direction of the vector $\vec{a}=3 i-j+2 k$.
25. If $\vec{r}=x i+y j+z k$ and $r=|\vec{r}|$, then show that gradient of $\left(\frac{1}{r}\right)=-\frac{\vec{r}}{r^{3}}$.
26. Using Green's theorem, find the work done by the force field $\vec{F}(x, y)=\left(x^{2}-y^{2}\right) i+x j$, on a particle that travel once around the circle $x^{2}+y^{2}=9$ in the counterclockwise direction.
27. Use the Divergence theorem to find the outward flux of $\vec{F}(x, y, z)=\left(x^{2}+y\right) i+z^{2} j+\left(e^{y}-z\right) k$, across the surface of the rectangular solid bounded by the coordinate planes and the planes $x=3, y=1$ and $z=2$.
28. Evaluate $\iiint_{G}\left(3 x^{2}+3 y^{2}+2 z\right) d V$ where G is the region enclosed by the circular cylinder $x^{2}+y^{2}=9$ and the planes $z=0$ and $z=2$.
29. Find a real root of the equation $x^{3}-2 x-5=0$ using bisection method.
30. Solve the equation $x^{3}-10 x^{2}+8 x+64=0$, given that the product of two of the roots is the negative of the third.
31. Explain the Newton - Raphson method of finding a solution to the equation $f(x)=0$.

SECTION - D

Long essay type problems : Answer any TWO questions.

32. If $\vec{F}(x, y, z)=x y^{2} i-3 y z j+x y k$, find $\nabla \times(\nabla \times \vec{F})$ and $\nabla \cdot(\nabla \times \vec{F})$.
33. Evaluate the surface integral $\iint_{\sigma} y^{2} z^{2} d S$ where σ is the part of the cone $z=\sqrt{x^{2}+y^{2}}$ that lies between the planes $z=1$ and $\mathrm{z}=2$.
34. The equation $x^{3}-3 x-4=0$ has a root between $x=1$ and $x=3$. Using Newton Raphson method, evaluate this root to four significant digits.
35. Verify Stoke's theorem for the vector field $\vec{F}(x, y, z)=2 z i+3 x j+5 y k$, taking σ to be the portion of the paraboloid $z=4-x^{2}-y^{2}$ for which $z \geq 0$ with upward orientation and C to be the positively oriented circle $x^{2}+y^{2}=4$ that forms the boundary of σ in the $x y$ - plane.
($2 \times 15=30$ Marks)

$$
\int * \int *
$$

