

MAR IVANIOS COLLEGE (AUTONOMOUS) THIRUVANANTHAPURAM

Reg. No.:	Name :
8	

Second Semester B.A. Degree Examination, June 2016 First Degree Programme under CBCSS

Complementary Course: Mathematics – II (for Economics)

AUMM231.1a: Mathematics for Economics – II

Time: 3 Hours Max. Marks: 80

SECTION – A

Answer ALL questions / problems in one or two sentences.

- 1. Find the two first order partial derivatives of $y = xt^3 + 3t^2 + x^2t$.
- 2. State Euler's theorem for homogeneous function.
- 3. If the demand is given by the linear function p = a bx, find the total revenue and the marginal revenue functions.
- 4. Define optimum feasible solution to an LPP.
- 5. Determine whether y = x(x-2) is decreasing at x = 2.
- 6. Find the minimum point of $y = x^2$.
- 7. Define a convex set.
- 8. Find the slope of the tangent at (3, 3) to the curve xy = 1000.
- 9. If $x = 3t^2$, y = 2t, find $\frac{dy}{dx}$ at t = 1.
- 10. Find the points of inflexion of the curve $y = x^4 4x^3 + 16x$.

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - B

Answer any **EIGHT** questions / problems, not exceeding a paragraph.

11. Find $\frac{du}{dt}$ where $u = x^2 + y^2$, $x = at^2$, y = 2at, a is an arbitrary constant.

1395

- 12. Define monotonic decreasing function. Also determine whether $y = x^2$ is monotonic decreasing or not.
- 13. Define inflexion point. Check whether x = 0 is an inflexion point of x^4
- 14. Suppose a firm sells 20,000 units when the price is \$16, but sells 30,000 units when the price falls to \$14. Find the price elasticity of demand over this range of prices. State whether demand is elastic or inelastic over this range.
- 15. State Young's theorem for partial derivatives and verify it for $u = e^{(x^2 + y^2)}$
- 16. Find the relative minimum and relative maximum value of the function, $z = x^2 + y^2 + 6x + 12$
- 17. If $z = \sqrt{x^2 + y^2}$, $x^3 + y^3 + 3axy = 25$, find the value of $\frac{dz}{dx}$ at x = y = a.
- 18. If $u = \frac{x^{1/4} + y^{1/4}}{x^{1/5} + y^{1/5}}$, find the value of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$.
- 19. If $u = \frac{x}{y}$, find the value of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$.
- 20. Write the general format of an LPP with *n* decision variables and *m* constraints.
- 21. Define vertex of a convex set. Write the importance of vertices in Linear Programming Problems containing two decision variables.
- 22. Show that the tangent at the point (1, 1) on the rectangular hyperbola xy = 1, cuts equal lengths of the axes.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - C

Short essay type problems: Answer any SIX questions.

2

- 23. Obtain the extreme values of $x^3 + 3xy^2 15x^2 15y^2 + 72x$.
- 24. Find the minimum value of $x^2 + y^2 + z^2$ when x + y + z = a.
- 25. If $z = \log(u^2 + v)$, $u = e^{(x^2 + y^2)}$, $v = x^2 + y$, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
- 26. Verify Young's theorem for the function, $u = \frac{\sqrt{x} + \sqrt{y}}{\sqrt{x} \sqrt{y}}$.
- 27. If $u = e^{xyz}$, show that $\frac{\partial^3 u}{\partial x \partial y \partial z} = (1 + 3xyz + x^2y^2z^2)e^{xyz}$.

- 28. Use graphical; method to solve the LPP: Minimize z = 3x + 10y subject to the following constraints: $3x + 2y \ge 6$, $4x + y \ge 4$, $2x + 3y \ge 6$, $x, y \ge 0$.
- 29. Use graphical method to show that the following LPP has an unbounded solution: Maximize z = 10x + 11y subject to the following constraints: $x + y \ge 4, 0 \le y \le 3, x \ge 2, x \ge 0$
- 30. If a consumer's daily income rises from Rs. 300 to Rs. 350, his purchase of a good X increases from 25 units per day to 40 units. Find the income elasticity of demand for X.
- 31. The demand function is given by p = 50 3x. Find TR, AR, and MR.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - D

Long essay type problems: Answer any TWO questions.

32. i). If
$$u = \log \sqrt{x^2 + y^2 + z^2}$$
, prove that $(x^2 + y^2 + z^2)(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}) = 1$

- ii). For the Cobb Douglas's production function $Q=AL^{\alpha}K^{\beta}$, prove that the elasticity of substitution is unity.
- 33. i). $f u = \log \sqrt{x^2 + y^2}$, Show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial u}{\partial y^2} = 0$
 - ii). The total demand function of a monopolist is p = 100 2X. Assuming that the demand function of segmented markets are $p_1 = 80 2.5x$, $p_2 = 180 10y$. If the cost function is C = 50 + 40X, maximize the profit.
- 34. i). If $u = x^y$, show that $\frac{\partial^3 u}{\partial x^2 \partial y} = \frac{\partial^3 u}{\partial x \partial y \partial x}$
 - ii). An apartment complex has 250 apartments to rent. If they rent x apartments, then their monthly profit in dollar is given by $p = -8x^2 + 320x 80,000$. How many apartments should they rent in order to maximize their profit.
- 35. A tailor has 80 sq. m. of cotton material and 120 sq. m. of woolen material. A suit requires 1 sq. m. of cotton and 3 sq. m. woolen material and a dress requires 2 sq. m. of each. A suit sells for Rs. 500 and a dress for Rs. 400. Write an LPP in terms of maximizing the income and solve it graphically.

 $(2 \times 15 = 30 \text{ Marks})$