

MAR IVANIOS COLLEGE (AUTONOMOUS) THIRUVANANTHAPURAM

Reg. No. :....

Name :....

Third Semester B.A. Degree Examination, November 2016 First Degree Programme under CBCSS Complementary Course: Mathematics – III (for Economics) AUMM331.1a: Mathematics for Economics – III

Time: 3 Hours

Max. Marks: 80

SECTION – A

Answer ALL questions / problems in one or two sentences.

- 1. If f'(x) = 2x, what is $\int f(x) dx$?
- 2. Evaluate $\int \sqrt{7x-3} dx$
- 3. Evaluate $\int_1^3 (1+2x) dx$
- 4. Write $\int \frac{1}{x^2 a^2} dx$
- 5. Write the Taylor Series expansion of $\sin x$ about x = 0.
- 6. Define exponential series.
- 7. If the nth term of a series is $3\left(\frac{1}{2}\right)^{n-1}$, write its first four terms.
- 8. Define a singular matrix.
- 9. Find the value of x if the matrix $A = \begin{bmatrix} 4 & 2 & 1 \\ 2 & 3 & 0 \\ x & 0 & 1 \end{bmatrix}$ is symmetric.
- 10. What is the order of AB if A is a 2×2 matrix and B is a 2×3 matrix?

 $(10 \times 1 = 10 \text{ Marks})$

SECTION – B

Answer any **EIGHT** questions / problems, not exceeding a paragraph.

11. Find $\int (2x+3) (x-3)(1-2x) dx$

P.T.O.

1576

- 12. Evaluate $\int \frac{5x^4}{1+x^{10}} dx$
- 13. Integrate $x \log x$ with respect to x.
- 14. Evaluate $\int \frac{x^3-1}{x-1} dx$

[0]

п

2

- 15. Find the area bounded by y = 3x, the x-axis and the ordinates at x = 1 and x = 3.
- 16. Marginal cost function of a firm is given by $2 + 4x + 30x^2$. If the fixed cost is Rs.100, determine the total cost function of the firm.
- 17. Find the revenue, if the marginal revenue function is $2 8x + 9x^2$.
- 18. Find the sum to infinity of the series: $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots$

x + y + 21

19. Find the Taylor series of $f(x) = e^{-5x}$ around x = 0 up to the term containing 20. Let $A = \begin{bmatrix} 2 & 1 & -2 \\ 3 & 0 & -1 \\ 2 & 1 & -3 \end{bmatrix}$. Find the determinant of A.

21. Find the values of x and y if A and B are equal, where $A = \begin{bmatrix} 0 & 2 & 8 \\ 2x + 3 & 2 & 0 \end{bmatrix}$;

$$B = \begin{bmatrix} 9 & x - 1 & 0 \end{bmatrix}$$
22. Find AB if A = $\begin{bmatrix} 1 & 2 & 0 & 2 \end{bmatrix}$ and B = $\begin{bmatrix} 4 \\ 3 \\ 2 \\ 1 \end{bmatrix}$. What is the order of AB?

 $(8 \times 2 = 16 \text{ Marks})$

SECTION – C

Short essay type problems : Answer any SIX questions.

- 23. Find the integral of $\log x$ using the rule, integration by parts.
- 24. Integrate $\frac{1}{\sqrt{9-16x^2}}$ with respect to *x*.
- 25. Using Taylor's series expansion, show that: $\log(1 + x) = x \frac{x^2}{2} + \frac{x^3}{3} \cdots$
- 26. Evaluate an approximate value of $\int_0^1 \sqrt{x^2 + 1}$ using trapezoidal rule.
- 27. If the marginal revenue function is given by $\frac{2}{(x+2)^2} + 3$, find the total revenue function and demand function in terms of *x*.
- 28. Find the sum to infinity of the series: $1 + \frac{2^2}{2!} + \frac{3^2}{3!} + \frac{4^2}{4!} + \cdots$

- 29. If $A = \begin{bmatrix} 2 & 3 \\ 1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 2 \\ 1 & 3 \end{bmatrix}$, check whether matrix multiplication is commutative.
- 30. Let $A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 3 & 5 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 2 \\ 3 & 1 \\ 1 & 7 \end{bmatrix}$. Find AB.
- 31. Find the solution of the following system of equations using Cramer's Rule: $3x_1 + 5x_2 = 1$, $2x_1 - 3x_2 = 7$

 $(6 \times 4 = 24 \text{ Marks})$

SECTION – D

Long essay type problems : Answer any TWO questions.

- 32. i) Evaluate $\int \frac{x-2}{x^2-4x+5} dx$
 - ii) Derive Domar's models for public debt and national income.
- 33. Use Simpson's rule with n = 6 to estimate $\int_{1}^{4} \sqrt{1 + x^{3}} dx$
- 34. Find the sum to infinity of the series: $\frac{1.3}{2!} + \frac{2.4}{3!} + \frac{3.5}{4!} + \cdots$
- 35. If $A = \begin{bmatrix} 2 & 3 \\ 3 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}$ and $C = \begin{bmatrix} -2 & 3 \\ 3 & 1 \end{bmatrix}$, verify the distributive laws:
 - i) A(B+C) = AB + AC, and ii) (A+B)C = AC + BC

 $(2 \times 15 = 30 \text{ Marks})$

]*]*]*]*]*]*]*]*]*]*]*]*]*]*]*]*]