MAR IVANIOS COLLEGE (AUTONOMOUS) THIRUVANANTHAPURAM

Reg. No. :
Name :

Third Semester B.A. Degree Examination, November 2016
 First Degree Programme under CBCSS
 Complementary Course: Mathematics - III (for Economics) AUMM331.1a: Mathematics for Economics - III

Time: $\mathbf{3}$ Hours
Max. Marks: 80

SECTION - A

Answer ALL questions / problems in one or two sentences.

1. If $f^{\prime}(x)=2 x$, what is $\int f(x) \mathrm{dx}$?
2. Evaluate $\int \sqrt{7 x-3} d x$
3. Evaluate $\int_{1}^{3}(1+2 x) d x$
4. Write $\int \frac{1}{\mathrm{x}^{2}-\mathrm{a}^{2}} \mathrm{dx}$
5. Write the Taylor Series expansion of $\sin \mathrm{x}$ about $\mathrm{x}=0$.
6. Define exponential series.
7. If the nth term of a series is $3\left(\frac{1}{2}\right)^{\mathrm{n}-1}$, write its first four terms.
8. Define a singular matrix.
9. Find the value of x if the matrix $A=\left[\begin{array}{lll}4 & 2 & 1 \\ 2 & 3 & 0 \\ x & 0 & 1\end{array}\right]$ is symmetric.
10. What is the order of $A B$ if A is a 2×2 matrix and B is a 2×3 matrix?

$$
(10 \times 1=10 \text { Marks) }
$$

SECTION - B

Answer any EIGHT questions / problems, not exceeding a paragraph.
11. Find $\int(2 x+3)(x-3)(1-2 x) d x$
12. Evaluate $\int \frac{5 \mathrm{x}^{4}}{1+\mathrm{x}^{10}} \mathrm{dx}$
13. Integrate $x \log x$ with respect to x.
14. Evaluate $\int \frac{x^{3}-1}{x-1} d x$
15. Find the area bounded by $y=3 x$, the x-axis and the ordinates at $x=1$ and $x=3$.
16. Marginal cost function of a firm is given by $2+4 x+30 x^{2}$. If the fixed cost is Rs.100, determine the total cost function of the firm.
17. Find the revenue, if the marginal revenue function is $2-8 x+9 x^{2}$.
18. Find the sum to infinity of the series: $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots$
19. Find the Taylor series of $f(x)=e^{-5 x}$ around $x=0$ up to the term containing
20. Let $A=\left[\begin{array}{lll}2 & 1 & -2 \\ 3 & 0 & -1 \\ 2 & 1 & -3\end{array}\right]$. Find the determinant of A.
21. Find the values of x and y if A and B are equal, where $A=\left[\begin{array}{ccc}0 & 2 & 8 \\ 2 x+3 & 2 & 0\end{array}\right]$; $B=\left[\begin{array}{ccc}0 & 2 & x+y+2 \\ 9 & x-1 & 0\end{array}\right]$
22. Find $A B$ if $A=\left[\begin{array}{llll}1 & 2 & 0 & 2\end{array}\right]$ and $B=\left[\begin{array}{l}4 \\ 3 \\ 2 \\ 1\end{array}\right]$. What is the order of $A B$?
($8 \times 2=16$ Marks $)$

SECTION - C

Short essay type problems : Answer any SIX questions.
23. Find the integral of $\log x$ using the rule, integration by parts.
24. Integrate $\frac{1}{\sqrt{9-16 x^{2}}}$ with respect to x.
25. Using Taylor's series expansion, show that: $\log (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots$
26. Evaluate an approximate value of $\int_{0}^{1} \sqrt{x^{2}+1}$ using trapezoidal rule.
27. If the marginal revenue function is given by $\frac{2}{(x+2)^{2}}+3$, find the total revenue function and demand function in terms of x.
28. Find the sum to infinity of the series: $1+\frac{2^{2}}{2!}+\frac{3^{2}}{3!}+\frac{4^{2}}{4!}+\cdots$
29. If $A=\left[\begin{array}{ll}2 & 3 \\ 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 2 \\ 1 & 3\end{array}\right]$, check whether matrix multiplication is commutative.
30. Let $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 1 & 3 & 5\end{array}\right], \quad B=\left[\begin{array}{ll}0 & 2 \\ 3 & 1 \\ 1 & 7\end{array}\right]$. Find $A B$.
31. Find the solution of the following system of equations using Cramer's Rule:

$$
3 x_{1}+5 x_{2}=1, \quad 2 x_{1}-3 x_{2}=7
$$

($6 \times 4=24$ Marks $)$

SECTION - D

Long essay type problems : Answer any TWO questions.
32. i) Evaluate $\int \frac{x-2}{x^{2}-4 x+5} d x$
ii) Derive Domar's models for public debt and national income.
33. Use Simpson's rule with $n=6$ to estimate $\int_{1}^{4} \sqrt{1+x^{3}} d x$
34. Find the sum to infinity of the series: $\frac{1.3}{2!}+\frac{2.4}{3!}+\frac{3.5}{4!}+\cdots$
35. If $A=\left[\begin{array}{ll}2 & 3 \\ 3 & 1\end{array}\right], \quad B=\left[\begin{array}{cc}1 & 0 \\ -1 & 2\end{array}\right]$ and $C=\left[\begin{array}{cc}-2 & 3 \\ 3 & 1\end{array}\right]$, verify the distributive laws:
i) $A(B+C)=A B+A C$, and
ii) $(A+B) C=A C+B C$
($\mathbf{2} \times \mathbf{1 5}=\mathbf{3 0}$ Marks)

$$
\int * \int *
$$

