MAR IVANIOS COLLEGE (AUTONOMOUS) THIRUVANANTHAPURAM

Reg. No. :
Name :

Second Semester B.Sc. Degree Examination, June 2016
 First Degree Programme under CBCSS
 Complementary Course: Statistics - II (for Mathematics)
 AUST231.2c: Random Variables

Time: $\mathbf{3}$ Hours
Max. Marks: 80

SECTION - A

Answer ALL questions / problems in one or two sentences.

1. Define discrete random variable.
2. Find $\mathrm{P}(\mathrm{X}=0)$ for a discrete random variable with possible values $-1,0,+1$ and with $P\left(X^{2}=1\right)=\frac{2}{3}$
3. Define the distribution function $\mathrm{F}(\mathrm{x})$ of a random variable X .
4. Define the marginal distributions of the continuous random variables X and Y with joint probability density function $f(x, y)$.
5. Express the variance of a random variable X in terms of expectation.
6. State multiplication theorem on expectation for two random variables X and Y .
7. Define conditional expectation.
8. What is a scatter diagram ?
9. Correlation between two random variables X and $\mathrm{Y}=\frac{1}{4}, \operatorname{Cov}(\mathrm{X}, \mathrm{Y})=\frac{1}{36}$. Obtain the product of the variances of X and Y .
10. Define fitting of a curve.

SECTION - B

Answer any EIGHT questions / problems, not exceeding a paragraph.
11. Verify whether $f(x)=\frac{x^{2}}{25}$, for $x=0,1,2,3,4$., is the probability mass function of a discrete random variable X .
12. Find k for a continuous random variable with p.d.f. $f(x)=k\left(1-x^{2}\right), 0<x<1$
13. Obtain the probability distribution of the random variable X with the following distribution function.

$$
F(x)=\left\{\begin{array}{lr}
0, \text { when } & x<1 \\
\frac{3}{8}, \text { when } & 1 \leq x<2 \\
\frac{5}{8}, \text { when } & 2 \leq x<3 \\
1, \text { when } & x \geq 3
\end{array}\right.
$$

14. List any four properties of the distribution function $\mathrm{F}(\mathrm{x})$ of a random variable X .
15. If X and Y are random variables such that $Y \leq X$, prove that $E(Y) \leq E(X)$.
16. For two independent random variables X and Y and for real numbers a and b, prove that $V(a X-b Y)=a^{2} V(X)+b^{2} V(Y)$.
17. For two random variables X and Y , prove that $\operatorname{Cov}(\mathrm{X}+\mathrm{a}, \mathrm{Y}+\mathrm{b})=\operatorname{Cov}(\mathrm{X}, \mathrm{Y})$, where a and b are any two real numbers.
18. If $f(x, y)=1 ; 0<x<1,0<y<1$ is a joint p.d.f. Find $\mathrm{P}(\mathrm{x}>0.4, \mathrm{Y}>0.6)$.
19. Verify whether the random variables with the following joint p.d.f. are independent.

$$
\begin{gathered}
f(x, y)=2-x-y ; 0 \leq x \leq 1,0 \leq y \leq 1 \\
=0, \text { otherwise } .
\end{gathered}
$$

20. Write a note on the "principle of least squares".
21. For two random variables X and Y, show that the geometric mean of regression coefficients is the absolute values of the coefficient of correlation.
22. For the variables X and Y , given the regression lines are $9 x-4 y+15=0$, and $25 x-6 y-7=0$. Identify the regression lines x on y and y on x.

SECTION - C

Short essay type problems : Answer any SIX questions.
23. Obtain the value of p for a random variable X with $E(X+2)^{2}=5$, having p.m.f.

$$
\begin{aligned}
f(x) & =p^{x}(1-p)^{1-x}, x=0,1, \\
& =0, \text { elsewhere }
\end{aligned}
$$

24. A random variable X has the following probability function:

$\mathrm{x}:$	0	1	2	3	4	5	6	7
$\mathrm{p}(\mathrm{x}):$	0	k	2 k	2 k	3 k	k^{2}	$2 k^{2}$	$7 k^{2}+\mathrm{k}$

Find (i). k (ii). The distribution function F (x) (iii). $P[1<X \leq 5]$
25. Define m.g.f., $M_{X}(t)$ of the random variable X. Prove that $\frac{d^{r}\left[M_{X}(t)\right]_{t=0}}{d t^{r}}$ is the $r^{\text {th }}$ raw moment of X .
26. Define characteristic function $\phi_{X}(t)$ of the random variable X. Prove that, $\left|\phi_{X}(t)\right| \leq 1$.
27. Given the joint p.m.f. of X and $\mathrm{Y}, f(x, y)=k(2 x+y) x=0,1,2 ; y=0,1,2,3$.

Find (i). k (ii). $\mathrm{E}(\mathrm{Y} / \mathrm{X}=2)$.
28. If X is a random variable with p.d.f. $f(x)=1,0 \leq x \leq 1 ; \quad f(x)=0$, otherwise. Find the probability density function of $Y=-2 \log _{e} X$.
29. Explain the method of fitting of a curve of the form $y=a b^{x}$.
30. State and prove Cauchy - Schwartz Inequality.
31. Prove that the coefficient of correlation remains unchanged under linear transformation.
($6 \times 4=24$ Marks)

SECTION - D

Long essay type problems : Answer any TWO questions.

32. i). Define raw moments and central moments of a random variable X. Express $r^{\text {th }}$ central moment in terms of raw moments. Deduce the expression for first 4 central moments in terms of raw moment
ii). Prove that two random variables X and Y are independent if and only if

$$
\begin{equation*}
M_{X, Y}\left(t_{1}, t_{2}\right)=M_{X}\left(t_{1}\right) M_{Y}\left(t_{2}\right) \tag{6Marks}
\end{equation*}
$$

33. Let X and Y are two random variables with joint p.m.f. $f(x, y)=\frac{x+2 y}{18} x=1,2 ; y=1,2$
i). Find Correlation between X and Y
(9 Marks)
ii). Find $V(X / Y=2)$.
(6 Marks)
34. i). Derive the regression lines x on y and y on x using a set of observations $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ on the variables X and Y .
ii). Derive an expression for the angle θ between the regression lines. ($\mathbf{5}$ Marks)
35. i). Derive Spearman's coefficient of correlation between two variables X and Y .
(8 Marks)
ii). Find the rank correlation coefficient for the following data:

$\mathrm{X}:$	45	43	46	42	40	44	49
$\mathrm{Y}:$	42	39	47	40	41	43	45

(7 Marks)
($\mathbf{2} \times \mathbf{1 5}=\mathbf{3 0}$ Marks)

$$
\int * \int \pi \iint * \int * \int * \int * \int *
$$

