

MAR IVANIOS COLLEGE (AUTONOMOUS) THIRUVANANTHAPURAM

Reg. No. :	Name :
	1 (002220 000000000000000000000000000000

Second Semester B.A. Degree Examination, June 2015 First Degree Programme under CBCSS

Complementary Course: Mathematics – II (for Economics)

AUMM231.1a: Mathematics for Economics – II

Time: 3 Hours Max. Marks: 80

SECTION - A

Answer ALL questions / problems in one or two sentences.

- 1. Find the second derivative of $y = (5x+9)^3$.
- 2. Determine whether the function $y = 4x x^2$ is increasing or decreasing at x = 1.
- 3. If $y = \sqrt{5 x^2}$, find $\frac{dy}{dx}$.
- 4. What is the marginal revenue function for the demand p = a bx.
- 5. The total revenue for a firm is $R = 22q q^2$. What is the output at which the total revenue is maximum?
- 6. Write down the degree of the homogeneous function $z = \frac{x^3 + y^3}{x y}$.
- 7. Find the turning point of the function $f(x) = x^2 4x + 8$.
- 8. Write the function $x^2 xz + yz z = 0$ in explicit form.
- 9. Define partial derivative of z = f(x,y) with respect to y at the point (x,y).
- 10. Find the second order partial derivative with respect to y of the function $x^3 + y^3 3xy$.

 $(10 \times 1 = 10 \text{ Marks})$

1100

SECTION - B

Answer any **EIGHT** questions / problems, not exceeding a paragraph.

- 11. Find the minimum value of $y = 2x 1 + \frac{1}{x}$ for positive values of x.
- 12. Show that $y = \frac{1}{2x+1}$ is a monotonic function. Illustrate by drawing the graph of the function.
- 13. If xy = 5 2x, show that $x \frac{d^2 y}{dx^2} + 2 \frac{dy}{dx} = 0$.
- 14. If f(x) = ax + b, find the derivatives of x f(x) and $\frac{f(x)}{x}$.
- 15. Find $\frac{dy}{dx}$ when x = ct, $y = \frac{c}{t}$.
- 16. Explain about inflexional value of the function f(x) at x = a.
- 17. Show that the demand curve $p = \frac{a}{x+b} c$ is downward sloping and convex from below.
- 18. If $z = (x^2 + y^2)^2$, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
- 19. State Young's theorem in partial derivatives.
- 20. Find the first and second order partial derivatives with respect to x of $\log \left(\frac{x}{x+y} \right)$.
- 21. If $x^2 + y^2 2x + 4y + 1 = 0$, find $\frac{\partial z}{\partial x}$.
- 22. State the complete differential form of the function z = f(x, y).

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - C

Short essay type problems: Answer any SIX questions.

- 23. Obtain the extreme values of $f(x) = x^3 3x^2 + 5$.
- 24. Evaluate the differential of $z = x^3 + y^3 3xy$.
- 25. Show that the perimeter of a rectangle of area 16 square meters is least when the rectangle is a square of side 4 meters.

2

- 26. Find $\frac{dz}{dt}$, when $z = x^2 + y^2$, where x = 1 + t, y = 1 t.
- 27. If $x^3 + y^3 + z^3 3xy = 0$ defines z as a function of x and y, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
- 28. Find x as a function p from the demand law $p = \sqrt{a bx}$. Show that the demand curve is an arc of a parabola with its axis parallel to the x axis.
- 29. Show that $z = 2x + y + x^2 + xy y^2$ has a single stationary value. Verify that it is a maximum value.
- 30. Examine the sections of the surface $x^2 + y^2 + z^2 = a^2$ and show that it is a sphere of radius a.
- 31. For inputs x and y, let P = xy be the production function. The budget constraint is 2x + y = 6. How much x and y should be bought to obtain maximum output P.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION – D

Long essay type problems: Answer any TWO questions.

- 32. i). If $u = \log(x^2 + y^2)$, prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$.
 - ii). For the total cost function $\Pi = ax^2 + bx + c$, explain about average cost and marginal cost. Give a graphical illustration.
- 33. i). If $y = x^2 + \frac{1}{x^2}$, show that $x^2 \frac{d^2 y}{dx^2} + \frac{dy}{dx} 4y = 0$.
 - ii). A television company produces x sets per week at a total cost of Rs. $\left(\frac{1}{25}x^2 + 3x + 100\right)$. The company is a monopolist and the demand is x = 75 3p, where p is the price per set. What is the monopoly price? Illustrate this by drawing a graph.
- 34. i). Show that $y = x + \frac{1}{x}$ has a maximum and a minimum value. Draw a graph to illustrate.

3 P.T.O.

1100

- ii). The average cost function for producing and marketing x units of a product is $AC = 2x 11 + \frac{50}{x}$. Find the total cost function and the marginal cost function.
- 35. i). Show that the curve $y = \frac{2x}{x^2 + 1}$ has three points of inflexion separated by a maximum point and a minimum point.
 - ii). State Euler's theorem on homogenous functions. Verify the theorem for $z = x^2 xy + 2y^2$.

$$(2 \times 15 = 30 \text{ Marks})$$