MAR IVANIOS COLLEGE (AUTONOMOUS) THIRUVANANTHAPURAM

Fourth Semester B.Sc. Degree Examination, June 2016
 First Degree Programme under CBCSS
 Core Course: Mathematics - III
 AUMM441: Algebra and Calculus II

Time: $\mathbf{3}$ Hours
Max. Marks: 80

SECTION - A

AnswerALL questions /problems in one or two sentences. Each question carries 1 mark.

1. Find $(x+2)^{3}$ in $\mathrm{Z}_{2}[x]$.
2. If $f(x)=2 x^{3}+4 x^{2}+3 x+2$ and $g(x)=3 x^{4}+2 x+4$ find $f(x) . g(x)$ in $Z_{5}(x)$.
3. What are the units of the ring $\mathrm{Z}_{7}[x]$.
4. Find the remainder in $\mathrm{Q}[x]$ when $x^{40}-8 x^{12}+3$ is dived by $x^{4}-1$
5. Find a zero of $x^{4}-2 x^{2}-2$ in $Q[x]$.
6. Find $\lim _{(x, y) \rightarrow(4,-2)}\left(4 x y^{2}-x\right)$.
7. Show that the value of $\frac{x y z}{x^{4}+y^{4}+z^{4}}$ approaches zero as $(x, y, z) \rightarrow(0,0,0)$ along $x=\mathrm{at}, y=b t, z=c t$.
8. If $\mathrm{f}(x, y)=x^{4} y^{2}-\sin (x y)+2 x^{7}$ find $f_{x y y}$.
9. Find the slope of the surface $\mathrm{Z}=f(x, y)$ in the x -direction at the point $(3,0)$.
10. Evaluate $\iint_{1}^{2} x \cos (\mathrm{xy}) \mathrm{dy} \mathrm{dx}$. where x ranges from $\frac{\pi}{2}$ to π
($10 \times 1=10$ Marks)

SECTION - B

Answer any EIGHT questions / problems. Each question carries 2 marks.
11. In $Q[x]$, when $f(x)$ is divided by $\left(x^{2}-3\right)(x+1)$, the remainder is $x^{2}+2 x+5$. What is the remainder when $f(x)$ is divided by $x^{2}-3$?
12. Factorize $4 x^{2}-4 x+8$ in $Z_{3}[x]$.
13. If R is a commutative Ring with unit element prove that so is $R[x]$.
14. Define an irreducible polynomial over a field F. Show that $x^{3}+x+1$ is irreducible over Z_{2}.
15. Using Euclid' s algorithm find a g.c.d of $x^{2}-x+4$ and $x^{3}+2 x^{2}+3 x+2$ in $F_{3}[x]$.
16. At what rate is the volume of the box changing if its length is 8 ft . and is increasing at $3 \mathrm{ft} / \mathrm{s}$, its width is 6 ft . and is increasing at $2 \mathrm{ft} / \mathrm{s}$. and its height is 4 ft . and is increasing at $1 \mathrm{ft} / \mathrm{s}$.
17. Locate all the relative extrema and saddle points of $f(x, y)=3 x^{2}-2 x y+y^{2}-8 y$.
18. Find a point on the surface $Z=8-3 x^{2}-2 y^{2}$ at which the tangent plane is perpendicular to the line $\mathrm{x}=2-3 \mathrm{t}, \mathrm{y}=7+8 \mathrm{t}, \mathrm{z}=5-\mathrm{t}$.
19. Find $\frac{d w}{d t}$ using chain rule, $\mathrm{w}=5 x^{2} y^{3} z^{4}, x=\mathrm{t}^{2}, y=t^{3}, z=t^{5}$.
20. Show that the function $\mathrm{U}=\ln \left(x^{2}+y^{2}\right), \mathrm{V}=2 \tan ^{-1}\left(\frac{y}{x}\right)$ satisfies the Caushy Reimann equations $\mathrm{U}_{x}=\mathrm{V}_{y}, \mathrm{U}_{y}=-\mathrm{V}_{x}$.
21. Use double integral to find the volume of the solid bounded by the plane $\mathrm{z}=4-x-y$ and below by the rectangle $R=[0,1] \times[0,2]$.
22. Evaluate $\iint_{R}\left(2 x-y^{2}\right) d A$ over the triangular region R enclosed between the lines $y=-x+1, y=x+1$ and $y=3$.
($8 \times 2=16$ Marks)

SECTION - C

Answer any SIX questions. Each question carries 4 marks.

23. Find a solution of $x^{4}=20 x+150$ by Ferrari's method.
24. Find a solution of $y^{3}+3 y=5$ by cardon's method.
25. State and prove Euler's real version of the fundamental theorem of algebra.
26. For any n, prove that $\sum_{d / n} \phi(d)=n$
27. If p is irreducible and f is any polynomial which is not divisible by p, show that the greatest common divisor of p and f is 1 .
28. Show that $f(x, y)=3 x^{2} y^{5}$ and $g(x, y)=\sin \left(3 x^{2} y^{5}\right)$ are continous everywhere.
29. If $f(x, y)=x \sin \left(x y^{3}\right)$ find $\mathrm{f}_{\mathrm{x}}(x, y)$ and $\mathrm{f}_{\mathrm{y}}(x, y)$
30. Use double integral to find the area of the region R enclosed between the parabola $y=\frac{1}{2} x^{2}$ and the line $y=2 x$.
31. Evaluate $\iint_{y}^{\sqrt{4-y^{2}}} \frac{1}{\sqrt{1+x^{2}+y^{2}}} d x d y$ where y ranges from 0 to $\sqrt{2}$.

SECTION - D

Answer any TWO questions. Each question carries 15 marks.
32. i). State and prove the division algorithm in $F[x]$ where F is a field.
ii). Prove that $a \in F$ is a zero of $f(x) \in F[x]$ if and only if $x-a$ is a factor of $f(x)$ in $F[x]$.
33. i). State and prove the unique factorization theorem in $F[x]$.
ii). Factorize $\left(x^{4}+3 x^{3}+2 x+4\right) \in Z_{5}[x]$.
34. i). Find the absolute maximum and minimum values of $F(x, y)=3 x y-6 x-3 y+7$ on the closed triangular region R with vertices $(0,0),(3,0)$ and $(0,5)$.
ii). Use Langrange Multiplier Method to find the points on the circle $x^{2}+y^{2}=45$ that are closest to and farthest from $(1,2)$.
35. i). Find the volume of the prison whose base is the triangle in the $x y$ plane bounded by the x-axis and the lines $y=x$ and $x=1$ and whose top lies in the plane $z=$ $f(x, y)=3-x-y$
ii). Find the Surface area of that portion of the surface $z=\sqrt{4-x^{2}}$ that lies above the rectangle R in the $x y$ plane whose coordinates satisfy $0 \leq x \leq 1$ and $0 \leq y \leq 4$.
($2 \times 15=30$ Marks)

$$
\int * \int *
$$

