MAR IVANIOS COLLEGE (AUTONOMOUS) THIRUVANANTHAPURAM

Reg. No. :
Name :

Third Semester B.A. Degree Examination, November 2016
 First Degree Programme under CBCSS
 Complementary Course: Mathematics - III (for Economics)
 AUMM331.1a: Mathematics for Economics - III
 (for 2014 Admissions - Improvement Only)

Time: $\mathbf{3}$ Hours
Max. Marks: 80

SECTION - A

Answer ALL questions / problems in one or two sentences.

1. If $f^{\prime}(x)=2 / x$ find $f(x)$.
2. Find the antiderivative of $\mathrm{e}^{3 x}$.
3. Evaluate $\int_{1}^{2} \sqrt{x} d x$.
4. If $\int_{1}^{2} f(x) d x=11$ and $\int_{2}^{4} f(x) d x=36$ find $\int_{1}^{4} f(x) d x$.
5. Evaluate $\int_{2}^{1} \frac{1}{(2 x+3) d x}$.
6. Find the total cost function given the marginal cost of an output is $5 x+4$ and initial cost is Rs. 15 .
7. Find the sum of the series $1+5 x+10 x^{2}+10 x^{3}+5 x^{4}+x^{5}$ when $x=2$.
8. Determine whether the series $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots$ is convergent or divergent.
9. Find the sum to infinity of the series whose sum to n terms is $\frac{n(n+1)(2 n+1)}{6}$.
10. Write the Taylor s formula.

SECTION - B

Answer any EIGHT questions / problems, not exceeding a paragraph.
11. Sketch the region whose area is represented by the integral $\int_{2}^{8} 5 x+7 d x$ and hence evaluate it.
12. Evaluate $\int_{0}^{9} 2 x \sqrt{x} d x$.
13. Evaluate $\int\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)^{2} d x$.
14. Integrate with respect to $x \quad$ i). $\frac{2 x+5}{x^{2}+5 x-7} \quad$ ii). $\frac{(\log x)^{2}}{x}$
15. If the marginal cost function is $f^{\prime}(q)=2 q+3 q^{2}+5$, find the total cost function when $f(1)=21$.
16. Prove that the capitalization is given by Y / r where Y is the constant stream of yield, r is the rate of interest.
17. Find the sum to infinity: i). $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots \quad$ ii). $5+\sqrt{5}+1+\frac{1}{\sqrt{5}}+\frac{1}{5}+\ldots$
18. Expand $\tan (x)$ about $x=0$.
19. Sum to infinity $\sum_{\frac{\infty}{(n+1)!}}^{(n+1}$.
20. Prove that $\log (1+2 n)=\log 2+\log n+\frac{1}{2 n}+\frac{1}{2} \frac{1}{4 n^{2}}+\frac{1}{3} \cdot \frac{1}{8 n^{3}}+\ldots$
21. Find the sum to infinity of the series whose sum of the n terms is $\frac{n}{n+1}$.
($8 \times 2=16$ Marks)

SECTION - C

Short essay type problems : Answer any SIX questions.
22. Evaluate $1+\frac{3}{4}+\frac{3.5}{4.8}+\frac{3.5 .7}{4.8 .12}+\ldots$
23. Evaluate the integral
i). $\int x e^{x} d x$
ii). $\int \frac{1}{(1+\sin x)} d x$.
24. Evaluate the integrals i). $\int \frac{3 x^{5}}{\left(1+x^{12}\right)} d x$.
ii.) $\int \frac{e^{\log x}}{x} d x$.
25. Find the demand curve, if the elasticity of demand curve is $x=5-3 p, p$ is the price.
26. If the marginal revenue is $\frac{a b}{(x+b)^{2}}-c$, then find the revenue function.
27. Find the sum to infinity of the series $\frac{1.2}{1!}+\frac{2.3}{2!}+\frac{3.4}{3!} \ldots$
28. Write the expansion of $\log (1-x)$. Find the sum to infinity $\frac{x-1}{x+1}+\frac{1}{2} \cdot \frac{x^{2}-1}{(x+1)^{2}}+\frac{1}{3} \cdot \frac{x^{3}-1}{(x+1)^{3}}+\ldots$
29. Find the Maclaurian series expansion of $\log (1+\sin x)$.
30. By expressing $0.353535 \ldots$ as an infinite geometric series find the fraction corresponding to the repeating decimal.
31. If the marginal revenue is $2 x^{2}+5 x-10$, find the total revenue at 20 units of output of the firm.
($6 \times 4=24$ Marks)

SECTION - D

Long essay type problems : Answer any TWO questions.
32. Explain Domar's model of public department and national income. Prove with usual notations that the ratio of department to income approaches a / r.
33. Evaluate $\int_{0}^{1} \frac{d x}{1+x}$ using trapezoidal rule.
34. The marginal Cost of a firm is $\mathrm{MC}=\frac{5}{(2 x+3)^{3}}$, the total cost in terms of x if the cost of zero output is Rs.23/-
35. Find the sum of the series $\frac{1.3}{4.8}+\frac{1.3 .5}{4.8 .12}+\frac{1.3 .5 .7}{4.8 .12 .16}+\ldots$
($\mathbf{2} \times \mathbf{1 5}=\mathbf{3 0}$ Marks)

$$
\int * \int *
$$

