MAR IVANIOS COLLEGE (AUTONOMOUS) THIRUVANANTHAPURAM

Reg. No. :
Name :
Fifth Semester B.Sc. Degree Examination, November 2016
First Degree Programme under CBCSS
Core Course: Mathematics - V
AUMM542: Complex Analysis I
Time: $\mathbf{3}$ Hours
Max. Marks: 80

SECTION - A

Answer ALL questions / problems in one or two sentences.

1. Define region in the complex plane.
2. Give an example of entire function.
3. State True / False: The function $f(z)=x^{2}+i y^{2}$ is nowhere analytic.
4. Give the power series representation of $\sin z$.
5. What do you mean by the radius of convergence of a power series ?
6. Express a nonzero complex number z in polar form.
7. If f is entire and if C is a smooth closed curve ,then $\int_{C} f(z) d z=$ \qquad .
8. State Rectangle Theorem.
9. State True / False: The function $f(z)=x^{2}+i v(x, y)$ is analytic for any choice of the real polynomial $\mathrm{v}(\mathrm{x}, \mathrm{y})$.
10. Show that $\left|e^{\mathrm{z}}\right|=e^{\mathrm{x}}$.
($10 \times 1=10$ Marks $)$

SECTION - B

Answer any EIGHT questions / problems, not exceeding a paragraph.
11. Find the square roots of $-5-12 \mathrm{i}$.
12. Describe the set whose points satisfy the relation $|\mathrm{z}-\mathrm{i}| \leq 1$.Is it a region ?

1511

13. Show that $\mathrm{f}(\mathrm{z})=\overline{\mathrm{z}}$ is not differentiable at any point z .
14. Show that no non constant analytic polynomial can take imaginary values only.
15. Find the radius of convergence of the power series $\sum_{n=1}^{\infty} n z^{n}$.
16. If $\mathrm{f}=\mathrm{u}+\mathrm{iv}$ is analytic in a region D and u is constant, then show that f is constant.
17. Prove that $f(z)=|z|^{2}$ is not analytic at $z=0$.
18. Find all solutions of $\mathrm{e}^{\mathrm{z}}=1$.
19. Show that $\int_{-C} f=-\int_{C} f$, where C is smooth curve.
20. Evaluate $\int_{C} f$ where $f(z)=x^{2}+\mathrm{iy}^{2}$ and C is given by $\mathrm{z}(\mathrm{t})=\mathrm{t}+\mathrm{it}, 0 \leq \mathrm{t} \leq 1$.
21. Show that the polynomial $P(x+i y)=2 x y+i\left(y^{2}-x^{2}\right)$ is analytic.
22. Find the domain of convergence of $\sum_{n=0}^{\infty} n(z-1)^{n}$.
($8 \times 2=16$ Marks)

SECTION - C

Short essay type problems: Answer any SIX questions.
23. Prove that $\left|z_{1}+z_{2}\right|^{2}+\left|z_{1}-z_{2}\right|^{2}=2\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)$
24. Suppose $\sum_{n=0}^{\infty} C_{n} z^{n}$ is zero at all points of a nonzero sequence $\left\{z_{k}\right\}$ which converges to zero. Show that the power series is identically zero.
25. Find the radius of convergence of the following power series.
a) $\sum_{n=0}^{\infty} \frac{z^{2 n+1}}{(2 n+1)!}$
b) $\sum_{n=0}^{\infty} z^{n!}$
26. If f is analytic in a region then prove that $|\mathrm{f}|$ is constant implies f is constant.
27. Show that the power series $f(z)=1+z+\frac{z^{2}}{2!}+\ldots \ldots \ldots \ldots \ldots \ldots=\sum_{n=0}^{\infty} \frac{z^{n}}{n}$ is equal to e^{z}.
28. Find all analytic functions $f=u+i v$ with $u(x, y)=x^{2}-y^{2}$.
29. Show that

$$
f(z)=\left\{\begin{array}{ll}
\frac{x y(x+i y)}{x^{2}+y^{2}} & , z \neq 0 \\
0 & , z=0
\end{array}\right. \text { is not differentiable at orgin. }
$$

30. Suppose $G(t)$ is a continuous complex valued function of t. Then show that $\left|\int_{a}^{b} G(t) d t\right| \leq \int_{a}^{b}|G(t)| d t$.
31. If C_{1} and C_{2} are smoothly equivalent .Prove that

$$
\int_{\mathrm{C}_{1}} \mathrm{f}=\int_{\mathrm{C}_{2}} \mathrm{f}
$$

SECTION - D

Long essay type problems: Answer any TWO questions.
32. i). Prove the following
a) $\overline{z_{1}+z_{2}}=\overline{z_{1}}+\overline{z_{2}}$
b) $\overline{\bar{Z}}=\mathrm{Z}$
c) $\left|z^{2}\right|=|z|^{2}$
d) $\overline{P(\mathrm{z})}=P(\bar{z})$ for any polynomial P with real coefficients.
ii). Evaluate $\int_{C} z^{k} d z$, if $k=-1$ and $k \neq-1$ where $C: z=R e^{i \theta}, 0 \leq \theta \leq 2 \pi$.
33. i). Define power series
ii). Suppose $\overline{l \iota m}\left|C_{k}\right|^{1 / k}=L$ then show that
a) If $L=0$, then $\sum_{n=0}^{\infty} C_{k} z^{k}$ converges for all z.
b) If $L=\infty$, then $\sum_{n=0}^{\infty} C_{k} z^{k}$ converges for $z=0$ only.
c) If $0<L<\infty$, set $R=1 / L$.then $\sum_{n=0}^{\infty} C_{k} Z^{k}$ converges for $|z|<R$.
34. If $f=u+i v$ is differentiable at z then show that f_{x} and f_{y} exist and satisfy the Cauchy - Riemann equation $f_{y}=i f_{x}$. Also show that $u_{x}=v_{y}$ and $u_{y}=-v_{x}$.
35. State and Prove Integral Theorem.
($2 \times 15=30$ Marks)

$$
\int * \int *
$$

