

MAR IVANIOS COLLEGE (AUTONOMOUS) THIRUVANANTHAPURAM

Reg. No. :
Name :
Third Semester B.A. Degree Examination, November 2015
First Degree Programme under CBCSS
Complementary Course: Mathematics - III (for Economics) AUMM331.1a: Mathematics for Economics - III
Time: $\mathbf{3}$ Hours
Max. Marks: 80

SECTION - A

Answer ALL questions / problems in one or two sentences.

1. What is $f(x)$, if $f^{\prime}(x)=\frac{1}{x^{3}}$.
2. Find the antiderivative of $\frac{1}{\sqrt{x+1}}$.
3. Evaluate $\int_{0}^{1}\left(x^{2}+5\right) d x$.
4. If $\int_{-1}^{2} f(x) d x=7$ and $\int_{2}^{5} f(x) d x=3$, find $\int_{-1}^{5} f(x) d x$.
5. Evaluate $\int_{0}^{1} \sqrt{1-x} d x$.
6. Find the total cost function if it is known that the cost of zero output is c and that the marginal cost of an output x is $\mathrm{a} x+\mathrm{b}$.
7. Find the sum of the series: $1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\ldots$
8. Determine whether the series $1+4+4^{2}+4^{3}+\ldots$ is convergent or divergent.
9. The sum of n terms of a series is $\frac{n}{5 n+1}$. Find the sum to infinity of the series.
10. Write the Taylor series expansion of e^{x} about $x=0$.

$$
\text { (10 } \times 1 \text { = } 10 \text { Marks) }
$$

SECTION - B

Answer any EIGHT questions / problems, not exceeding a paragraph.
11. Sketch the region whose area is represented by the integral $\int_{1}^{5} 3 d x$ and hence evaluate it.
12. Evaluate $\int_{-1}^{2}\left(x^{2}+e^{x}\right) d x$.
13. Find $\int \frac{2 x+5}{\sqrt{x}} d x$.
14. Find $\int \frac{x}{\left(x^{2}-1\right)^{2}} d x$.
15. If the marginal cost function is $f^{\prime}(q)=2+3 \sqrt{q}+\frac{5}{\sqrt{q}}$, find the total cost function when $f(1)=21$.
16. If Y is the constant stream of yield and r is the rate of interest, prove that the capitalization is given by $\frac{Y}{r}$.
17. Find the sum of the following infinite series:
i). $1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\ldots$
ii). $\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\ldots$
18. Expand $\ln (1+x)$ about $x=0$.
19. Sum to infinity the series $\sum_{n}^{\infty}=1 \frac{1}{(n+1)!}$.
20. Find the Taylor series expansion of $\sin x$, about $x=0$.
21. Write the series whose sum of n terms is $\frac{n}{(n+1)}$. Find the sum to infinity of the series.
($8 \times 2=16$ Marks)

SECTION - C

Short essay type problems : Answer any SIX questions.
22. Evaluate $1+\frac{3}{4}+\frac{3 \cdot 5}{4.8}+\frac{3 \cdot 5 \cdot 7}{4.8 \cdot 12}+\ldots$
23. Find the integrals:
i). $\int x e^{x} d x$
ii). $\int \sqrt{5+2 x} d x$
24. Find the integrals:
i). $\int \frac{x^{3}}{2+x^{4}} d x$
ii. $\int \frac{-e^{\sqrt{x}}}{\sqrt{x}} d x$
25. Find the demand curve, if the elasticity of demand curve is $x=(\mathrm{a}-\mathrm{bp})$; a, b are constants.
26. If the marginal revenue function is $P_{m}=\frac{a b}{(x+b)^{2}}-c$, show that $p=\frac{a}{(x+b)}-c$ is the demand law.
27. Show that $\sum_{n=1}^{\infty} \frac{2 n}{n!}=2 e$.
28. If $0<x<2$, prove that $\log \left(x^{2}\right)=2\left[(x-1)-\frac{1}{2}(x-1)^{2}+\frac{1}{3}(x-1)^{3}+\ldots\right]$
29. Find the Taylor series expansion of $\log (1+\sin x)$, about $x=0$.
30. Find the fraction corresponding to the repeating decimal $0.151515 \ldots$ by expressing it as an infinite geometric series.
31. Find the total revenue at 18 units of a firm if its marginal revenue is $10-2 x+x^{2}$.
($6 \times 4=24$ Marks)

SECTION - D

Long essay type problems : Answer any TWO questions.
32. Explain Domar's model of public debt and national income. Prove with usual notations that the ratio of debt to income approaches $\frac{a}{r}$.
33. Evaluate $\int_{0}^{1} \frac{d x}{1+x}$ using Simpson's rule by dividing the interval into four equal parts.
34. Find the sum of the series $\frac{1.3}{4.8}+\frac{1 \cdot 3 \cdot 5}{4.8 \cdot 12}+\frac{1 \cdot 3 \cdot 5 \cdot 7}{4 \cdot 8 \cdot 12.16}+\ldots$
35. The marginal cost function of a firm is given as $\mathrm{MC}=\frac{a}{\sqrt{a x+b}}$. Find the total cost in terms of x if the cost of zero output is zero.
($\mathbf{2} \times \mathbf{1 5}=\mathbf{3 0}$ Marks)

$$
\int * \int *
$$

