

MAR IVANIOS COLLEGE (AUTONOMOUS) THIRUVANANTHAPURAM

Reg. No. :....

Name :....

First Semester B.Sc. Degree Examination, November 2014 First Degree Programme under CBCSS Complementary Course: Chemistry – I (for Physics) AUCH131.2d: Principles of Chemistry

Time: 3 Hours

Max. Marks: 80

SECTION – A

Answer ALL questions in a word or one or two sentences.

- 1. State the Heisenberg's uncertainty principle ?
- 2. Write the Schrodinger wave equation and explain the terms.
- 3. The hybridization of S in SF₆ molecule is _____.
- 4. If a molecule contains unpaired electrons, its magnetic nature is _____.
- 5. The H–O–H bond angle in water molecule is _____.
- 6. Give the mathematical expression for the First law of thermodynamics.
- 7. The ______ of the universe always increases in the course of every spontaneous change.
- 8. A system which can exchange energy but not matter with its surroundings is called a/an _____.
- 9. How is ΔG related to ΔS and ΔH ?
- 10. Standard enthalpies of all elements are arbitrarily fixed as ______.

(10 x 1 = 10 Marks)

SECTION – B

Answer any **EIGHT** questions, not exceeding a paragraph.

- 11. Calculate the wavelength of the spectral line obtained in the Lyman series if the electron in the hydrogen atom has been excited to the 3^{rd} energy level. Rydberg constant = 1.097 x 10^7 m⁻¹.
- 12. What are the n, l, and m values for an electron in the $3p_z$ orbital?

1025

- 13. Write the electronic configuration of Cu (At. No: 29) and account for its extra stability.
- 14. Compare the bond order, bond distance and stability of O_2 , O_2^{2-} , O_2^{2+-} .
- 15. The boiling point of o-nitrophenol is higher than that of p-nitrophenol. Explain.
- 16. State and explain Fajan's rule.
- 17. Differentiate between extensive and intensive properties with examples.
- 18. In a process, 750 J of heat is absorbed by the system while it does work equivalent to 1200 J in expansion. Calculate the internal energy change in the process.
- 19. State the Second law of thermodynamics in terms of entropy.
- 20. Give the relationship between heat of reaction at constant volume and constant pressure and explain the terms involved.
- 21. State and illustrate Hess's law of constant heat summation.
- 22. The enthalpy of neutralization of any strong acid by a strong base is a constant. Comment.

(8 x 2 = 16 Marks)

SECTION – C

Short essay type / Problems : Answer any SIX questions.

- 23. What are quantum numbers ? Discuss the significance of each quantum number.
- 24. Discuss the different rules that determine the ground state electronic configuration of atoms.
- 25. Write a note on the concept of electronegativity and various scales for it.
- 26. Predict the geometry of BeCl₂, BF₃, CH₄ and PCl₅ on the basis of VSEPR theory.
- 27. The bond dissociation enthalpy of N_2 molecule is very high. Explain on the basis of MOT.
- 28. Derive the relationship between Cp and Cv for n moles of an ideal gas.
- 29. What is meant by a spontaneous process ? Explain the criteria for spontaneity and equilibrium in terms of free energy change.
- 30. The standard enthalpies of formation of $CO_2(g)$ and $H_2O(1)$ are 393.5 and 285.8 KJmol⁻¹ respectively. The standard enthalpy of combustion of ethane is 1560.0 KJmol⁻¹. Calculate the standard enthalpy of formation of ethane.
- 31. Write notes on 1) Enthalpy of combustion and 2) Enthalpy of Hydration.

(6 x 4 = 24 Marks)

SECTION – D

Long essay type : Answer any **TWO** questions.

- 32. (i). What are the postulates of the Bohr's atomic theory ?
 - (ii). How is the hydrogen spectrum explained on the basis of Bohr's theory ?
- 33. Explain the Born-Haber cycle for NaCl. Discuss its applications.
- 34. (i). Derive an expression for the work done in a reversible isothermal expansion of an ideal gas.
 - (ii). Calculate the maximum work done when 5 moles of an ideal gas expands reversibly and isothermally from a pressure of 10 atm to 2 atm at 390 K. Also calculate the change in internal energy, change in enthalpy and heat absorbed by the system.
- 35. (i). Derive the Kirchoff's equation and arrive at its integrated form.
 - (ii). Calculate ΔH at 298 K for the reaction H₂O (g) \longrightarrow H₂ (g) + $\frac{1}{2}$ O₂ (g). Given: ΔH at 291 K is 241.75 KJ; the molar heat capacities at constant pressure for H₂, O₂, and H₂O are 28.83, 29.12, and 33.56 JK⁻¹mol⁻¹ respectively.

 $(2 \times 15 = 30 \text{ Marks})$