MAR IVANIOS COLLEGE (AUTONOMOUS) THIRUVANANTHAPURAM

Reg. No. :
Name :

Fourth Semester B.Sc. Degree Examination, June 2016 First Degree Programme under CBCSS
 Complementary Course: Mathematics - IV (for Chemistry)
 AUMM431.2b: Abstract Algebra and Linear Transformations

Time: $\mathbf{3}$ Hours
Max. Marks: 80

SECTION - A

Answer ALL questions / problems in one or two sentences.

1. Give an example of a non-abelian group.
2. Find the quotient and the remainder obtained when -38 is divided by 7 .
3. Give an example of an infinite cyclic group.
4. Define a skew field.
5. Determine an element $b \in Z$ such that $a * b=a$ where $*$ is defined by $a *$ $b=a+b-2$.
6. What is the geometrical interpretation of the statement "two vectors in R^{2} are linearly dependent"?
7. Define a linear transformation.
8. Let $T: R^{5} \rightarrow R^{3}$ be a linear transformation. What is the order of the standard matrix corresponding to T ?
9. Write the standard matrix corresponding to the transformation reflection through origin.
10. Say True or False: "A linear transformation T is $1-1$ if and only columns of matrix corresponding to T is not linearly dependent".
($10 \times 1=10$ Marks)

SECTION - B

Answer any EIGHT questions / problems, not exceeding a paragraph.
11. State True or False:
i). Every abelian group is cyclic.
ii). Set of all natural numbers under addition is a group.
iii). Every field is a ring.
iv). Intersection of any two subgroup of a group is again a subgroup.
12. Compute the subgroups generated by $\langle 2\rangle$ and $\langle 3\rangle$ of $\left\langle\mathrm{Z}_{8},+_{8}\right\rangle$.
13. Find all orders of the subgroups $\left\langle Z_{12},+_{12}\right\rangle$ and $\left\langle Z_{8},+_{8}\right\rangle$.
14. Define order of an element in a group. Find the order of 2 in the group $\left\langle Z_{6},+_{6}\right\rangle$.
15. Justify the statement "Set of all integers under usual addition and multiplication forms a field".
16. Find the number of elements of the cyclic subgroup generated by 25 in $\left\langle Z_{30},+_{30}\right\rangle$.
17. Define automorphism. Find the number of automorphisms of $\left\langle Z_{6},+_{6}\right\rangle$.
18. Give a necessary and sufficient condition for any subset of a group is to be a subgroup.
19. Is the transformation defined by $T(x, y)=(5 y, x)$ linear. Justify ?
20. Find the standard matrix A for the dilation transformation $\mathrm{T}(\mathrm{X})=3 \mathrm{X}$ for any $X \in R^{2}$.
21. If $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$ does the transformation $X \rightarrow A X$ projects points in R^{3} to $X_{1} X_{2}$ - plane.
22. Let $T\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}, 3 x_{1}+2 x_{2}\right)$. Find an $X \in R^{2}$ such that $T(X)=(3,5)$.
($8 \times 2=16$ Marks)

SECTION - C

Short essay type problems : Answer any SIX questions.

23. Consider the binary operation * on the set of positive rational numbers Q^{+}defined by $a * b=a b / 4$. Show that $\left\langle Q^{+}, *>\right.$ is a group.
24. Show that in a group G, if $(a * b)^{2}=a^{2} * b^{2} \forall a, b \in G$, then G is abelian.
25. Draw a sub graph diagram for Klien -4 group.
26. Find all generators of the cyclic group Z_{8}.
27. Show that the vectors $(1,-1,2) ;(2,4,2)$ and $(2,1,0)$ are linearly independent.
28. Let $T: R^{2} \rightarrow R^{3}$ be a linear transformation defined by $T(x, y)=(3 x+y, 5 x+7 y, x+3 y)$. Show that T is one - one. Is T onto. Justify.

1335
29. Let $T\left(e_{1}\right)=\left[\begin{array}{c}-5 \\ -7 \\ 2\end{array}\right]$ and $T\left(e_{2}\right)=\left[\begin{array}{c}-3 \\ 8 \\ 0\end{array}\right]$ where $e_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $e_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Find a formula for the image of an arbitrary vector in R^{2} under T .
30. Determine whether the columns of the matrix $A=\left[\begin{array}{ccc}0 & 1 & 4 \\ 1 & 2 & -1 \\ 5 & 8 & 0\end{array}\right]$ form a linearly independent set.
31. i). If $\{u, v, w\}$ is a linearly independent set then show that the set $\{u+v, v+w, w+u\}$ is also linearly independent.
ii). If $S=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ such that $v_{4}=0$.Is S linearly independent. Justify.

$$
\text { (} 6 \times 4=24 \text { Marks })
$$

SECTION - D

Long essay type problems : Answer any TWO questions.
32. i). Give all subgroups of Z_{18} and draw the sub graph diagram.
ii). Define Ring and a Field.
iii).Give examples of:
a). Ring with unity
b). Ring without unity
c). Ring but not a Field
33. i). Find all Units of Z_{14} and Z.
ii). Construct a non abelian group of order 6 .
34. i). Find the value of ' a ' such that $\left[\begin{array}{c}1 \\ 2 a\end{array}\right]$ and $\left[\begin{array}{c}a \\ a+2\end{array}\right]$ is linearly dependent.
ii). Let T be a linear transformation defined by $\mathrm{T}(\mathrm{X})=\mathrm{AX}$. find a vector X such whose image under T is b and check whether X is unique, where

$$
A=\left[\begin{array}{ccc}
1 & 0 & -2 \\
-2 & 1 & 6 \\
3 & -2 & -5
\end{array}\right] \text { and } \mathrm{b}=\left[\begin{array}{c}
-1 \\
7 \\
-3
\end{array}\right]
$$

35. i). Let $\mathrm{A}=\left[\begin{array}{cccc}-9 & -4 & -9 & 4 \\ 5 & -8 & -7 & 6 \\ 7 & 11 & 16 & -9 \\ 9 & -7 & -4 & 5\end{array}\right]$. If T is linear transformation defined by $T(X)=A X$. find all X such that $T X=0$.
ii). If $\mathrm{T}: R^{2} \rightarrow R^{2}$ is linear transformation defined by $\mathrm{T}(\mathrm{X})=\mathrm{AX}$. Find the image of the vector $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ under T, where A is given by $\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$.
($\mathbf{2} \times 15=30$ Marks)

$$
\int * \int *
$$

