

MAR IVANIOS COLLEGE (AUTONOMOUS) THIRUVANANTHAPURAM

First Semester B.Sc. Degree Examination, November 2015 First Degree Programme under CBCSS
 Core Course: Mathematics - I
 AUMM141: Methods of Mathematics (for 2015 Admissions Only)

Time: $\mathbf{3}$ Hours
Max. Marks: 80

SECTION - A

Answer ALL questions / problems in one or two sentences.

1. State whether the statement, " for all $n \geq 1,2^{n}>2+n$ " is true or false. Give reason.
2. State fundamental theorem of arithmetic.
3. Write 9987 in base 100.
4. If a divides $b c$ and $(a, b)=1$, then prove that a divides c.
5. Suppose that a car moves with a constant velocity $88 \mathrm{ft} / \mathrm{s}$ in the positive direction of an s - axis. Given that the s co - ordinate of the car at time $t=0$ is $s=100$, find an equation for s as a function of t.
6. Draw the graph of the parametric curve $x=2 t-3, y=6 t-7$ by eliminating the parameter.
7. Consider the function $f(x)=6 x-x^{2}$ and the point $P(2,8)$. Find the slope of secant lines to the graph of $y=f(x)$ determined by P and the point on the graph at $x=3$.
8. Find $\frac{d^{2} y}{d x^{2}}$ for $x^{2}-3 y^{2}=19$.
9. Find an equation of the parabola that is symmetric about the y-axis has its vertex at the origin and passes through the point $(5,2)$.
10. State the reflection property of parabolas.

SECTION - B

Answer any EIGHT questions / problems, not exceeding a paragraph.
11. For all $n \geq 1$, prove that $1+3+\ldots+(2 n-1)=n^{2}$.
12. If $b=a q+r$, then prove that $(b, a)=(a, r)$.
13. Given integers a, b, e, there are integers m and n with $a m+b n=e$ if and only if (a, b) divide e.
14. Prove that $6 \cdot 4^{n} \equiv 6(\bmod 9)$ for any $n \geq 0$.
15. Sketch the graph of the function.

$$
f(x)=\left\{\begin{array}{lc}
0 & x \leq-1 \\
\sqrt{1-x^{2}} & -1<x<1 . \\
x & x \geq 1
\end{array}\right.
$$

16. Explain why a linear function is appropriate for the data in the table

x	1.5	2.5	3.5	5.5	9.5
y	0.3	1.1	1.9	3.5	6.7 . Find a linear equation that relates x and y.

17. Show that $|x|$ is continuous everywhere.
18. Prove that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=0$.
19. If n is a positive integer, then $\frac{d x^{n}}{d x}=n x^{n-1}$.
20. Find $\frac{d^{2} y}{d x^{2}}$ of $4 x^{2}-2 y^{2}=9$.
21. Sketch the graph of the parabolas $x^{2}=12 y$ and $y^{2}+8 x=0$.
22. Find an equation of the ellipse with foci $(0, \pm 2)$ and major axis with end points $(0, \pm 4)$.
($8 \times 2=16$ Marks)

SECTION - C

Short essay type problems : Answer any SIX questions.
23. Write 1987 in base $1000,8,2$.
24. Find the greatest common divisor of 17017 and 18900.
25. If $n>4$ is not prime, then prove that $(n-1)!\equiv 0(\bmod n)$.
26. State the vertical line test and explain it through an example.
27. Sketch the graph of $y=\sqrt{x-3}, y=|x-3|, y=x^{2}-4 x+5$.
28. State the intermediate value Theorem and prove that If f is continuous on $[a, b]$ and if $f(a)$ and $f(b)$ are nonzero and have opposite signs, then there is at least one solution of the equation $f(x)=0$ in the interval (a, b).
29. Draw the graph of $y=|x|$ and prove that it is not differentiable at $x=0$. Find a formula for $f^{\prime}(x)$.
30. Sketch the graphs of the ellipses $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$ and $x^{2}+2 y^{2}=4$ showing their foci each.
31. Identify and sketch the graph of $153 x^{2}-192 x y+97 y^{2}-30 x-40 y-200=0$.
($6 \times 4=24$ Marks)

SECTION - D

Long essay type problems : Answer any TWO questions.

32. Prove that any non empty set of natural numbers has a least element.
33. Define the terms limit, continuity, derivative of a function and instantaneous velocity of a particle. Suppose a ball is thrown vertically upward and the height in feet of the ball t seconds after it release is modeled by the function,
$s(t)=-16 t^{2}+29 t+6 ; 0 \leq \mathrm{t} \leq 2$. What is a reasonable estimate for the instantaneous velocity of the ball at time $t=0.5 \mathrm{~s}$.
34. State and prove the product and quotient rule for differentiation. Also find the slopes of the curve $y^{2}-x+1=0$ at the points $(2,-1)$ and $(2,1)$.
35. Sketch the graphs of the hyperbolas $\frac{x^{2}}{4}-\frac{y^{2}}{9}=1$ and $y^{2}-x^{2}=1$, showing their vertices, foci and asymptotes.
($2 \times 15=30$ Marks)

$$
\int * \int *
$$

