1220

MAR IVANIOS COLLEGE (AUTONOMOUS) THIRUVANANTHAPURAM

Reg. No. :	Name :	

First Semester B.Sc. Degree Examination, November 2015 First Degree Programme under CBCSS

Complementary Course: Mathematics – I (for Chemistry)

AUMM131.2b: Differentiation and Analytic Geometry

(for 2015 Admissions Only)

Time: 3 Hours Max. Marks: 80

SECTION - A

Answer ALL questions / problems in one or two sentences.

- 1. For what values of x when y = 0, if $y = x^2 6x + 8$.
- 2. Find the natural domain of $f(x) = \tan x$.
- 3. Find $\lim_{x\to 5} (x^2 4x + 3)$.
- 4. Find the average rate of change of $y = x^2 + 2x + 1$ with respect to x over the interval [3, 5].
- 5. Define absolute minimum of a function in an interval I.
- 6. State Rolle's theorem.
- 7. Evaluate $\lim_{(x,y)\to(1,4)} [5x^3y^2 9]$.
- 8. State the extreme value theorem.
- 9. Find the rectangular coordinates of the point P whose polar coordinates are $(6, \frac{2\pi}{3})$.
- 10. State the Reflection Property of Ellipses.

 $(10 \times 1 = 10 \text{ Marks})$

SECTION – B

Answer any **EIGHT** questions / problems, not exceeding a paragraph.

11. Find the parametric equations for the portion of the parabola $x = y^2$ joining (1, -1) and (1, 1), oriented down to up.

1220

- 12. Define continuity of a function f at x = c.
- 13. Compute $\lim_{x\to 1} \frac{\sin (\pi x)}{x-1}$.
- 14. Find $\frac{dy}{dx}$ if $5y^2 + \sin y = x^2$.
- 15. Locate the relative extrema of $f(x) = x^3 3x^2 + 3x 1$, if any.
- 16. Find the slope of the curve $y = x^2 + 1$ at the point (2, 5) and use it to find the equation of the tangent at x = 2.
- 17. Find the velocity and acceleration of a particle which moves on a parabola $s(t) = 16t^2 29t + 6$ at t = 3.
- 18. Find $\frac{d}{dx}$ [ln (tan hx)].
- 19. Determine $f_x(1, 3)$ for the function $f(x, y) = 2x^3y^2 + 2y + 4x$.
- 20. Show that when f is differentiable, a function of the form z = f(xy) satisfies the equation $x \frac{\partial z}{\partial x} y \frac{\partial z}{\partial y} = 0$.
- 21. Find the equation of the parabola with focus (0, -3) and directrix y = 3.
- 22. Sketch the graph of the curve r = 1 in polar coordinates.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - C

Short essay type problems: Answer any SIX questions.

- 23. Sketch the graph of the parametric equations. $x = \cos t$ and $y = \sin t$, $(0 \le t \le \pi)$.
- 24. Show that |x| is continuous everywhere.
- 25. Prove that $\lim_{x\to 0} \frac{\sin x}{x} = 1$.
- 26. A liquid form of penicillin manufactured by a pharmaceutical firm is sold in bulk at a price of Rs.200/- per unit. If the total production cost (in rupees) for x units is $C(x) = 5000000 + 80x + 0.003x^2$ and if the production capacity of the firm is at most 30,000 units in a specified time, how many units of penicillin must be manufactured and sold in that time to maximize the profit?
- 27. Find the interval [a, b] on which $f(x) = x^4 + x^3 x^2 + x 2$ satisfies the Rolle's theorem.
- 28. Find $\frac{d}{dx}[\ln |x|]$.

- 29. Let $u = (x^2 + y^2 + z^2)^{-1/2}$. Show that $\frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$.
- 30. Describe the graph of the function $x^2 y^2 4x + 8y 21 = 0$.
- 31. Find the equation of the ellipse with foci $(0, \pm 2)$ and major axis with end points $(0, \pm 4)$.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION – D

Long essay type problems: Answer any **TWO** questions.

- 32. i). Sketch the graph of $y = 2 \frac{1}{r+1}$ by transforming the graph of $y = \frac{1}{r}$ appropriately.
 - ii). Evaluate the following limits.

(a). $\lim_{x\to 1} \frac{x^3-1}{x-1}$. (b). $\lim_{x\to 0} \frac{\sqrt{x+1}-1}{x}$

- 33. i). Find the radius and height of the right circular cylinder of largest volume that can be inscribed in a right circular cone with radius 6 inches and height 10 inches.
 - ii). Show that $\sinh^{-1} x = \ln (x + \sqrt{x^2 + 1})$.
- 34. i). Let $f(x, y) = x^2y + 5y^3$. Find the slope of the surface z = f(x, y) in the x – direction at the point (1, -2).
 - ii). Verify Euler's theorem for the function $f(x, y) = (x^2 + xy + y^2)^{-1}$.
 - iii). Use Lagrange multipliers to determine the dimensions of a rectangular box, open at the top, having a volume of 32 ft³, and requiring the least amount of material for its construction.
- 35. i). Describe the graph of the function $x^2 y^2 4x + 8y 21 = 0$.
 - ii). Find the new coordinates of the point (2, 4) if the coordinate axes are rotated through an angle of $\theta = 30^{\circ}$.
 - iii). For the conic $r = \frac{3}{2 2\cos\theta}$ find the eccentricity and distance from the pole to the directrix and sketch the graph.

 $(2 \times 15 = 30 \text{ Marks})$