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SECTION-A

Answer ALL questions / problems in one or two sentences.

1. State the fundamental theorem of algebra.

2. Form arational cubic equation whose roots are 2, 1 + 2i.

3. Give an example of an equation for which o =1 and 3 = 2 are double roots.

4. Find two numbers a and b such that a real root of f(x) = x*~ x — 1 = 0 lies between
aand b.

5. Evaluate ["{(cost) i+ j—2tk}dt.

6. Find the value of a if F = (axy — 2%) i + (* + 2yz) j + (y*— axz) k is irrotational.

7. Prove that the vector F=x(y —2) i +y(z—x) j + z( X —y) K is solenoidal.

8. State Green’s theorem.

9.  Find the arc length parameterization of the cylinder x*+ (y —3)*=9,0<z <5.

10. Define irrotational vector field.
(10 x 1 = 10 Marks)
SECTION-B

Answer any EIGHT questions / problems, not exceeding a paragraph.

11. Solve the equation x* + x* — 33x? + 61x — 14 = 0, given that 2 ++/3 is a root.
12. State Descartes’ rule of signs and apply it to prove that the equation 5x° + 2x +6 = 0
have one negative and two imaginary roots.
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13.

14.
15.

16.

17.

18.
19.
20.
21.

22,

23.
24,

25.

26.
217,

28.

29.

30.

If the roots of the equation x> + px* + gx + r = 0 are in arithmetic progression, show
that 2p® — 9pq + 27r = 0.

Find the curl of the vector xyzi+ (xz°—y?z) j+ (x2°—y?*2)k at (1,2,-1).

If a is a constant vector and r = xi + yj + zK, show that V x (axr) = 2a.

Evaluatejc(x—y+z—2)ds where C is the straight line segment from (0, 1, 1) to

(1,0,1).
Find the work done by the conservative field F = yzi + xzj + xyk = Vxyz along any
smooth curve C joining the point A (1, 3, —6) and (3, 3, 5).
If r = xi +yj + zk then prove that 1).divr=3 ). curlr=0.
Find parametric equation of the line tangent to r(t) = e i — 2sin5t jatt = 0.
Find the length of the indicated portion of the curve r (t) = 6t% — 2t%j — 3t’k, 1<t < 2.
Find V.(F xG) where F (x,y,z) = 2xi + j + S5yk and G (x,y,z) = xi + yj — zk.
Use Green’s theorem to find the area of the region enclosed by the curve
r(t) =(acost)i+ (bsint) j,0<t<2m.

(8 x 2 =16 Marks)

SECTION-C

Short essay type problems : Answer any SIX questions.

Solve the equation 24x® — 14x* — 63x + 45 = 0, one root being double the other.

Find to four places of decimals a real root of x® — 3x + 1= 0 which lies between
1 and 2.

Find the directional derivative of the function f = xy’z — x’yz® at the point (-1, 2, 1)
in the direction 3i + j — 4k.

Find the curvature for the helix r(t) = (a cost )i + (b sint)j +btk,a,b > 0, a®+b*# 0.
Verify that the field F(x,y) = 2xy’i + 3x%?j is conservative. Find a potential
function ¢ for the field.

Find the work done in moving a particle in the force field
f=3x"i+ (2xz—vy) j + z k along the space curve x = 2t%, y = t%, z = 4t — 1 from
t=0tot=1.

Evaluate the integral j(xy+ z®)ds from (1, 0, 0) to (-1, 0, m) along the curve
C
x=cost,y=sint,z=t,0<t<m

Verify Green’s theorem for the field F(x,y) = (X —y) i + X and the region bounded
by the unit circle C: r(t) = (cost) i + (sint) j, 0 <t < 2m.
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Use stokes theorem to evaluate §C F.dr forthe hemisphere o:x*+y*+2?=9,2>0,

its bounding circle x*+y? =9,z =0, and the field F = yi — xj.
(6 x 4 = 24 Marks)
SECTION-D

Long essay type problems : Answer any TWO questions.

Solve the equation x* + 15x* + 70x? + 120x + 64 = 0, given that the roots are in
geometric progression.

Obtain a root to 4 decimal places of x° +5x +1=0 by using Newton — Raphson
method.

The position function of a particle is given by r = e' cost i + €' sint j. Evaluate the
scalar tangential and normal as well as vector tangential and normal component of

acceleration at t =%. Also find the curvature of the path at the point where the

particle is situated at t = %
Use the Divergence theorem to find the outward flux of the vector field
F (x,y,z) = X%i + y°j + 2’k across the surface of the region that is enclosed by the

hemispherez = ,/a? —x? —y? and the plane z = 0.
(2 x 15 = 30 Marks)
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