MAR IVANIOS COLLEGE (AUTONOMOUS) THIRUVANANTHAPURAM

Reg. No. :
Name :

Third Semester B.Sc. Degree Examination, November 2016 First Degree Programme under CBCSS
 Complementary Course: Mathematics - III (for Chemistry) AUMM331.2b: Vector Analysis and Theory of Equations (for 2014 Admissions - Improvement Only)

Time: $\mathbf{3}$ Hours
Max. Marks: 80

SECTION - A

Answer ALL questions / problems in one or two sentences.

1. State the fundamental theorem of algebra.
2. Form a rational cubic equation whose roots are $2,1+2 \mathrm{i}$.
3. Give an example of an equation for which $\alpha=1$ and $\beta=2$ are double roots.
4. Find two numbers a and b such that a real root of $f(x)=x^{3}-x-1=0$ lies between a and b.
5. Evaluate $\int_{0}^{\pi}\{(\cos t) \boldsymbol{i}+\boldsymbol{j}-2 t \boldsymbol{k}\} d t$.
6. Find the value of a if $\mathbf{F}=\left(a x y-z^{2}\right) \mathbf{i}+\left(x^{2}+2 y z\right) \mathbf{j}+\left(y^{2}-a x z\right) \mathbf{k}$ is irrotational.
7. Prove that the vector $\mathbf{F}=x(\mathrm{y}-\mathrm{z}) \mathbf{i}+\mathrm{y}(\mathrm{z}-x) \mathbf{j}+\mathrm{z}(x-\mathrm{y}) \mathbf{k}$ is solenoidal.
8. State Green's theorem.
9. Find the arc length parameterization of the cylinder $x^{2}+(y-3)^{2}=9,0 \leq z \leq 5$.
10. Define irrotational vector field.

$$
(10 \times 1=10 \text { Marks })
$$

SECTION - B

Answer any EIGHT questions / problems, not exceeding a paragraph.
11. Solve the equation $x^{4}+x^{3}-33 x^{2}+61 x-14=0$, given that $2+\sqrt{3}$ is a root.
12. State Descartes' rule of signs and apply it to prove that the equation $5 x^{3}+2 x+6=0$ have one negative and two imaginary roots.
13. If the roots of the equation $x^{3}+\mathrm{p} x^{2}+\mathrm{q} x+\mathrm{r}=0$ are in arithmetic progression, show that $2 p^{3}-9 p q+27 r=0$.
14. Find the curl of the vector $x y z \mathbf{i}+\left(x z^{2}-y^{2} z\right) \mathbf{j}+\left(x z^{2}-y^{2} z\right) \mathbf{k}$ at $(1,2,-1)$.
15. If \mathbf{a} is a constant vector and $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+\mathrm{zk}$, show that $\nabla \times(\mathbf{a} \times \mathbf{r})=2 \mathbf{a}$.
16. Evaluate $\int_{C}(x-y+z-2) d s$ where C is the straight line segment from $(0,1,1)$ to $(1,0,1)$.
17. Find the work done by the conservative field $\mathbf{F}=y z \mathbf{i}+x z \mathbf{j}+x y \mathbf{k}=\nabla x y z$ along any smooth curve C joining the point $\mathrm{A}(1,3,-6)$ and $(3,3,5)$.
18. If $\mathrm{r}=x \mathrm{i}+\mathrm{yj}+\mathrm{zk}$ then prove that \quad i). $\operatorname{div} \mathrm{r}=3 \quad \mathrm{ii}$. curl $\mathrm{r}=0$.
19. Find parametric equation of the line tangent to $\mathbf{r}(t)=\mathrm{e}^{2 t} \boldsymbol{i}-2 \sin 5 \mathrm{t} \mathbf{j}$ at $\mathrm{t}=0$.
20. Find the length of the indicated portion of the curve $\mathbf{r}(\mathrm{t})=6 t^{3} \mathbf{i}-2 t^{3} \mathbf{j}-3 t^{3} \mathbf{k}, 1 \leq t \leq 2$.
21. Find $\nabla .(F \times G)$ where $\mathbf{F}(x, y, z)=2 x \mathbf{i}+\mathbf{j}+5 \mathrm{y} \mathbf{k}$ and $\mathbf{G}(x, \mathrm{y}, \mathrm{z})=x \mathbf{i}+\mathrm{y} \mathbf{j}-\mathrm{z} \mathbf{k}$.
22. Use Green's theorem to find the area of the region enclosed by the curve $\mathbf{r}(\mathrm{t})=(\mathrm{a} \operatorname{cost}) \mathbf{i}+(\mathrm{b} \sin \mathrm{t}) \mathbf{j}, 0 \leq t \leq 2 \pi$.

$$
(8 \times 2=16 \text { Marks })
$$

SECTION - C

Short essay type problems : Answer any SIX questions.

23. Solve the equation $24 x^{3}-14 x^{2}-63 x+45=0$, one root being double the other.
24. Find to four places of decimals a real root of $x^{3}-3 x+1=0$ which lies between 1 and 2.
25. Find the directional derivative of the function $f=x y^{2} z-x^{2} y z^{3}$ at the point $(-1,2,1)$ in the direction $3 \mathrm{i}+\mathrm{j}-4 \mathrm{k}$.
26. Find the curvature for the helix $\mathbf{r}(t)=(\mathrm{a} \cos t) \mathbf{i}+(\mathrm{b} \sin t) \mathbf{j}+\mathrm{b} t \mathbf{k}, \mathrm{a}, \mathrm{b} \geq 0, \mathrm{a}^{2}+\mathrm{b}^{2} \neq 0$.
27. Verify that the field $\mathbf{F}(x, y)=2 x y^{3} \mathbf{i}+3 x^{2} y^{2} \mathbf{j}$ is conservative. Find a potential function φ for the field.
28. Find the work done in moving a particle in the force field $\mathbf{f}=3 x^{2} \mathbf{i}+(2 x z-y) \mathbf{j}+\mathrm{z} \mathbf{k}$ along the space curve $x=2 t^{2}, \mathrm{y}=t^{2}, \mathrm{z}=4 t^{2}-1$ from $t=0$ to $t=1$.
29. Evaluate the integral $\int_{\mathrm{C}}\left(x y+z^{3}\right) d s$ from $(1,0,0)$ to $(-1,0, \pi)$ along the curve $x=\cos t, y=\sin t, z=t, 0 \leq t \leq \pi$.
30. Verify Green's theorem for the field $\mathrm{F}(x, \mathrm{y})=(x-\mathrm{y}) \mathrm{i}+x \mathrm{j}$ and the region bounded by the unit circle $\mathrm{C}: \mathrm{r}(t)=(\cos t) \mathrm{i}+(\sin t) \mathrm{j}, 0 \leq t \leq 2 \pi$.
31. Use stokes theorem to evaluate $\oint_{C} \boldsymbol{F} . d \boldsymbol{r}$ for the hemisphere $\sigma: x^{2}+y^{2}+z^{2}=9, z \geq 0$, its bounding circle $x^{2}+y^{2}=9, z=0$, and the field $\mathbf{F}=y \mathbf{i}-x \mathbf{j}$.
($6 \times 4=24$ Marks)

SECTION - D

Long essay type problems : Answer any TWO questions.
32. Solve the equation $x^{4}+15 x^{3}+70 x^{2}+120 x+64=0$, given that the roots are in geometric progression.
33. Obtain a root to 4 decimal places of $x^{5}+5 x+1=0$ by using Newton - Raphson method.
34. The position function of a particle is given by $\mathbf{r}=e^{t} \cos t \mathbf{i}+e^{t} \sin t \mathbf{j}$. Evaluate the scalar tangential and normal as well as vector tangential and normal component of acceleration at $t=\frac{\pi}{4}$. Also find the curvature of the path at the point where the particle is situated at $t=\frac{\pi}{4}$.
35. Use the Divergence theorem to find the outward flux of the vector field $\mathbf{F}(x, \mathrm{y}, \mathrm{z})=x^{3} \mathbf{i}+\mathrm{y}^{3} \mathbf{j}+\mathrm{z}^{3} \mathbf{k}$ across the surface of the region that is enclosed by the hemisphere $z=\sqrt{a^{2}-x^{2}-y^{2}}$ and the plane $\mathrm{z}=0$.
($\mathbf{2} \times \mathbf{1 5}=\mathbf{3 0}$ Marks)

$$
\int * \int *
$$

