MAR IVANIOS COLLEGE (AUTONOMOUS) THIRUVANANTHAPURAM

Department of Mathematics

Syllabus for FDP

Bachelor of Science in Mathematics
Academic Year 2018-19 onwards

FIRST DEGREE PROGRAMME IN MATHEMATICS (CORE)
 Programme Specific Outcomes
 - PSO1: Provide students with a thorough knowledge of fundamental Mathematical facts
 - PSO2: To enhance the students reasoning, analytical and problem-solving skills
 - PSO3: Adequately prepare students to pursue further studies in Mathematics and allied areas
 - PSO4: Instil in the students the spirit of doing research in Pure and Applied Mathematics and allied areas
 - PSO5: To prepare graduates with the capabilities to teach the Mathematics curriculum
 at the higher secondary level
 - PSO6: To encourage students to uphold scientific integrity and objectivity in professional endeavors

GENERAL STRUCTURE

(ESE-End Semester Exam), CE (Continuous Evaluation) L-Lecture, P-Practical

| FDP B.Sc. MATHEMATICS (Core) | | $\begin{array}{c}\text { Instruct } \\ \text { ional } \\ \text { h/week }\end{array}$ | $\begin{array}{c}\text { Credit }\end{array}$ | $\begin{array}{c}\text { ESE/ } \\ \text { ESA } \\ \text { durat } \\ \text { ion }\end{array}$ | $\begin{array}{c}\text { CE/ } \\ \text { CA }\end{array}$ |
| ---: | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| $\%$ | $\begin{array}{c}\text { ESE/ } \\ \text { ESA }\end{array}$ | | | | |
| (h) | | | | | |$]$

TOTAL CREDITS

	Semester 1	Semester 2	Semester 3	Semester 4	Semester 5	Semester 6
Total Credits $(\mathbf{1 2 0})$	17	17	18	26	19	23

QUESTION PAPER PATTERN (For all Semesters)

Question Type	Total number of Questions	Number of Questions to be answered	Marks for each Question	Total Marks
Very short answer type (Probably Objective type)	10	10	1	10
Short answer type (simple and short answer problems-knowledge level)	12	8	2	16
Long answer type (simple and long answer problems- understanding level)	9	6	4	24
Long essay (theory/ problems eliciting applications- knowledge, understanding and application levels)	4	2	15	30
Total	$\mathbf{3 5}$	$\mathbf{2 6}$	---	$\mathbf{8 0}$

AUMM 141: METHODS OF MATHEMATICS

Total Teaching Hours: 72

No of Lecture Hours/Week: 4
Max Marks: 80
Credits: 4

Course Outcomes:

CO1: Gaining practice in solving problems in limits.
CO2: Finding the rate of changes through differentiation method.
CO3: Finding the area under a curve through the integration method.

Text: H Anton, I Bivens, S Davis. Calculus, 10th Edition, John Wiley\& Sons	
Module 1 Methods of Differential Calculus	Total Teaching Hours: 36

In the beginning of this module, the basic concepts of calculus like limit of functions especially infinite limits and limits at infinity, continuity of functions, basic differentiation, derivatives of standard functions, implicit differentiation etc. should be reviewed with examples.
(The above topics which can be found in chapter 2 of the text are not to be included in the end semester examination. A maximum of 5 hours should be devoted for the review of the above topics.)

After this quick review, the main topics to discuss in this module are the following:
Differentiating equations to relate rates, how derivatives can be used to approximate non-linear functions by linear functions, error in local linear approximation, differentials; Increasing and decreasing functions and their analysis, concavity of functions, points of inflections of a function and applications, finding relative maxima and minima of functions and graphing them, critical points, first and second derivative tests, multiplicity of roots and its geometrical interpretation, rational functions and their asymptotes, tangents and cusps on graphs.

Absolute maximum and minimum, their behaviour on various types of intervals, applications of extrema problems infinite and infinite intervals, and in particular, applications to Economics.

Motion along a line, velocity and speed, acceleration, Position - time curve, Rolle's, Mean Value theorems and their consequences, Indeterminate forms and L'Hopital's rule.
[The topics to be discussed in this module can be found in Chapters 2, 3 \& 6]

Module 2 Methods of Integral Calculus

The module should begin with revising integration techniques, like integration by substitution, fundamental theorem of calculus, integration by parts, integration by partial fractions, integration by substitution and the concept of definite integrals.
(The above topics which can be found in chapter 4 and 7 of text [1] below are not to be included in the end semester examination. A maximum of 5 hours should be devoted for the review of the above topics).
After this quick review, the main topics to discuss in this module are the following:
Finding position, velocity, displacement, distance travelled of a particle by integration, analysing the distance-velocity curve, position and velocity when the acceleration is constant, analysing the free-fall motion of an object, finding average value of a function and its applications.

Area, volume, length related concepts: Finding area between two curves, finding volumes of some three-dimensional solids by various methods like slicing, disks and washers, cylindrical shells, finding length of a plane curve, surface of revolution and its area.

Work done: Work done by a constant force and a variable force, relationship between work and energy;
Relation between density and mass of objects, center of gravity, Pappus theorem and related problems Fluids, their density and pressure, fluid force on a vertical surface.
Introduction to Hyperbolic functions and their applications in hanging cables.
Improper integrals, their evaluation, applications such as finding arc length and area of surface.
[The topics to be discussed in this module can be found in Chapters 4, 5, 6 and 7]

Reference

1. G B Thomas, R L Finney. Calculus, 9th Edition, Addison-Wesley Publishing Company
2. J Stewart. Calculus with Early Transcendental Functions, 7th Edition, Cengage India Private Limited
3. Tom M. Apostol. Calculus, Volume 1, $2^{\text {nd }}$ Edition, John Wiley \& Sons
4. Tom M. Apostol. Calculus, Volume 2, John Wiley \& Sons

SEMESTER-2	
AUMM 221: FOUNDATIONS OF MATHEMATICS	
Total Teaching Hours: 72	No of Lecture Hours/Week: 4
Max Marks: 80	Credits: 3
Course Outcomes:	
CO1: Review of concepts of sets and functions.	
CO2: Understand the way in which a mathematician formally makes statements and	
proves or disproves it.	
CO3: Review of vector calculus.	

Texts: 1. S R Lay. Analysis with an Introduction to Proof, 5th Edition, Pearson Education

Limited

2. H Anton, I Bivens, S Davis. Calculus, 10th Edition, John Wiley\& Sons

Module 1 Foundations of Logic and Proof
Total Teaching Hours: 24
The following are the main topics in this module:
Statements, logical connectives, and truth tables, conditional statements and parts of it, tautology and contradiction, using various quantifiers like universal and existential quantifiers in statements, writing negations, determining truth value of statements.

Proof: Various techniques of proof like inductive reasoning, counter examples, deductive reasoning, hypothesis and conclusion, contrapositive statements, converse statements, contradictions, indirect proofs.

Sets and relations: A review of basic set operations like union, intersection, subset, superset concepts, equality of sets, complements, disjoint sets, indexed family of sets and operations on such families, ordered pairs, relations on sets, cartesian products (finite case only), various types of relations (reflexive, symmetric, transitive, equivalence), partitions of sets.

Functions: domain, codomain, range of functions, one-one, onto, bijective functions, image, preimage of functions, composing functions and the order of composition, inverse functions, cardinality of a set, equinumerous (equipotent) sets.
[The topics to be discussed in this module can be found in Chapters $1 \& 2$ of Text-1]

Module 2 Foundations of Co-ordinate Geometry
The following are the main topics in this module:
Parametric equations of a curve, orientation of a curve, expressing ordinary functions parametrically, tangent lines to parametric curves, arc length of parametric curves.
Polar co-ordinate systems, converting between polar and rectangular co-ordinate systems, graphs in the polar co-ordinate system, symmetry tests in the polar co-ordinate system, families of lines, rays, circles, other curves, spirals.
Tangent lines to polar curves, arc length of the curve, area, intersections of polar curves.
Conic sections: definitions and examples, equations at standard positions, sketching them, asymptotes of hyperbolas, translating conics, reflections of conics, applications, rotation of axes and eliminating the cross-product term from the equation of a conic, polar equations of conics, sketching them, applications in astronomy such as Kepler's laws, related problems.

[The topics to be discussed in this module can be found in Chapter 10 of Text-2]

Module 3 Foundations of Vector Calculus

Total Teaching Hours: 24
To begin with, the three-dimensional rectangular co-ordinate system should be discussed and how distance is to be calculated between points in this system. Basic operations on vectors like their addition, cross and dot products should be introduced next. The concept of projections of vectors and the relation with dot product should be given emphasize.
Equations of lines determined by a point and vector, vector equations in lines, equations of planes using vectors normal to be should be discussed. Quadric surfaces which are three dimensional analogues of conics should be discussed next. Various co-ordinate systems like cylindrical, spherical should be discussed next with the methods for conversion between various co-ordinate systems.

[The topics to be discussed in this module can be found in Chapter 11 of Text-2]

Reference

1. J P D'Angelo, D B West. Mathematical Thinking - Problem Solving and Proofs, 2nd Edition, Prentice Hall
2. Daniel J Velleman. How to Prove it: A Structured Approach, 2nd Edition, Cambridge University Press
3. Elena Nardi, Paola lannonne. How to Prove it: A brief guide for teaching Proof to Year 1 mathematics undergraduates, University of East Anglia, Centre for Applied Research in Education
4. G B Thomas, R L Finney. Calculus, 9th Edition, Addison-Wesley Publishing Company
5. J Stewart. Calculus with Early Transcendental Functions, 7th Edition, Cengage India Private Limited.

SEMESTER-3

AUMM 341: ELEMENTARY NUMBER THEORY AND CALCULUS - I

Total Teaching Hours: 90	No of Lecture Hours/Week: 5
Max Marks: 80	Credits: 4

Course Outcomes:

CO1: Understand fundamental facts in elementary number theory.
CO2: Understand the methods of calculus of vector valued functions.
CO3: Evaluation of multiple integrals and finding its applications

Texts: 1. H Anton, I Bivens, S Davis. Calculus, 10th Edition, John Wiley\& Sons
2. Thomas Koshy. Elementary Number Theory with Applications, 2nd Edition, Academic Press

Module 1 Divisibility in Integers and Congruences
Total Teaching Hours: 18
The topic of elementary number theory is introduced for further developing the ideas in abstract algebra. The following are the main topics in this module:
The division algorithm, Pigeonhole principle, divisibility relations, inclusion-exclusion principle, base-b representations of natural numbers, prime and composite numbers, infinitude of primes, GCD, linear combination of integers, pairwise relatively prime integers, the Euclidean algorithm for finding GCD, the fundamental theorem of arithmetic, canonical decomposition of an integer into prime factors, LCM.
Linear Diophantine Equations and existence of solutions, Euler's Method for solving LDE's.
Defining congruence classes, complete set of residues, modulus exponentiation, finding reminder of big numbers using modular arithmetic, cancellation laws in modular arithmetic.

> [The topics to be discussed in this module can be found in Chapter 2 Sections $1,2,5$; Chapter 3 Sections $1-5 \&$ Chapter 4 Section 1 of Text-2]

Module 2 Vector Valued Functions	Total Teaching Hours: 30

Towards going to the calculus of vector valued functions, we define such functions. Other topics in this module are the following:

Parametric curves in the three-dimensional space, limits, continuity and derivatives of vector valued functions, geometric interpretation of the derivative, basic rules of differentiation of such functions, derivatives of vector products, integrating vector functions, length of an arc of a parametric curve, change of parameter, arc length parametrizations, various types of vectors that can be associated to a curve such as unit vectors, tangent vectors, binormal vectors, definition and
various formulae for curvature, the geometrical interpretation of curvature, motion of a particle along a curve and geometrical interpretation of various vectors associated to it, various laws in astronomy like Kepler's laws and problems.

[The topics to be discussed in this module can be found in Chapter 12 of Text-1]

Module 3 Multivariable Calculus	Total Teaching Hours: 42

After introducing the concept of functions of more than one variable, the sketching of them in three dimensional cases with the help of level curves should be discussed. Contours and level surface plotting also should be discussed. The other topics in this module are the following:

Limits and continuity of Multivariable functions, various results related to finding the limits and establishing continuity, continuity at boundary points, partial derivatives of functions, partial derivative as a function, its geometrical interpretation, implicit partial differentiation, changing the order of partial differentiation and the equality conditions.
Differentiability of a multivariate function, differentiability of such a function implies its continuity, local linear approximations, chain rules - various versions, directional derivative and differentiability, gradient and its properties, applications of gradients.
Tangent planes and normal vectors to level surfaces, finding tangent lines to intersections of surfaces, extrema of multivariate functions, techniques to find them, critical and saddle points, Lagrange multipliers to solve extremum problems with constrains.
[The topics to be discussed in this module can be found in Chapter 13 of Text-1]

Reference

1. G B Thomas, R L Finney. Calculus, 9th Edition, Addison-Wesley Publishing Company
2. J Stewart. Calculus with Early Transcendental Functions, 7th Edition, Cengage India Private Limited
3. G A Jones, J M Jones. Elementary Number Theory, Springer

SEMESTER-4

AUMM 441: ELEMENTARY NUMBER THEORY AND CALCULUS - II

Total Teaching Hours: 90
Mo of Lecture Hours/Week: $\mathbf{5}$
Max Marks: $\mathbf{8 0}$
:---:
Course Outcomes:
- CO1: Study abstract algebraic structures.
- CO2: Study the fundamental facts in elementary number theory.
- CO3: Learn to evaluate multiple integrals and get a knowledge on calculus of vector

Texts: 1. H Anton, I Bivens, S Davis. Calculus, 10th Edition, John Wiley \& Sons
2. Thomas Koshy. Elementary Number Theory with Applications, 2nd Edition, Academic Press
Module 1 Congruence Relations in Integers
Total Teaching Hours: 30
Towards defining the congruence classes in Z , we begin with defining the congruence relation. Its various properties should be discussed, and then the result that no prime of the form $4 \mathrm{n}+3$ is a sum of two squares should be discussed. The other topics in this module are the following:
linear congruences and existence of solutions, solving Mahavira's puzzle, modular inverses, Pollard Rho factoring method.

Certain tests for divisibility - The numbers here to test are powers of 2, 3, 5, 7, 9, 10, 11, testing whether a given number is a square.

Linear system of congruence equations, Chinese Remainder Theorem and some applications.
Some classical results like Wilson's theorem, Fermat's little theorem, Pollard p-1 factoring method, Eulers' theorem.
Congruence Applications: Divisibility tests, Modular designs, Check digits, the p-Queens puzzle, Round-Robin tournaments, the perpetual calendar.

> [Chapter 4 Sections 2, 3; Chapter 5 Sections 1, 2; Chapter 6 Section $1 \&$ Chapter 7 Sections 1, 2, 4 of Text-2]

Module 2 Multiple Integrals and their Applications	Total Teaching Hours: 30

Here we discuss double and triple integrals and their applications. The main topics in this module are the following:

Double integrals: Defining and evaluating double integrals, its properties, double integrals over non rectangular regions, determining limits of integration, revising the order of integration, area and double integral, double integral in polar coordinates and their evaluation, finding areas using polar double integrals, conversion between rectangular to polar integrals, finding surface area, surface of revolution in parametric form, vector valued function in two variables, finding surface area of parametric surfaces.

Triple integrals: Properties, evaluation over ordinary and special regions, determining the limits, volume as triple integral, modifying order of evaluation, triple integral in cylindrical co-ordinates, Converting the integral from one co-ordinate system to other.
Change of variable in integration (single, double, and triple), Jacobians in two variables.
[The topics to be discussed in this module can be found in Chapter 14 of Text-1]

Module 3 Integration of Vector Valued Functions

Total Teaching Hours: 30
After the differentiation of vector valued functions in the last semester, here we introduce the concept of integrating vector valued functions. Some important theorems are also to be discussed here. The main topics are the following:
Vector fields and their graphical representation, various type of vector fields (inverse-square, gradient, conservative), potential functions, divergence, curl, the ∇ operator, Laplacian.
Integrating a function along a curve (line integrals), integrating a vector field along a curve, defining work done as a line integral, line integrals along piecewise-smooth curves, integration of vector fields and independence of path, fundamental theorem of line integrals, line integrals along closed paths, test for conservative vector fields, Green's theorem and applications.

Defining and evaluating surface integrals, their applications, orientation of surfaces, evaluating flux integrals, The divergence theorem, Gauss' Law, Stoke's theorem, applications of these theorems.
[The topics to be discussed in this module can be found in Chapter 15 of Text-1]

Reference

1. G B Thomas, R L Finney. Calculus, 9th Edition, Addison-Weseley Publishing Company
2. J Stewart. Calculus with Early Transcendental Functions, 7th Edition, Cengage India Private Limited
3. G A Jones, J M Jones. Elementary Number Theory, Springer

SEMESTER-5	
AUMM 541:	REAL ANALYSIS-I
Total Teaching Hours: 90	No of Lecture Hours/Week: 5
Max Marks: 80	Credits: 4

Course Outcomes:

CO1: Studying the basis of the metric space structure of R so as to serve as a stepping stone into the idea of abstract topological spaces.
CO2: Know the realization of the set R of real numbers as a field.
CO3: Acquire skill in using plotting softwares such as Geogebra to plot various functions.

Text: Stephen Abbot. Understanding Analysis, 2nd Edition, Springer	
Module 1 Real Number System	Total Teaching Hours: 25

This module introduces the basic concepts about the real number system with some introduction to sets, functions, and proof techniques. The following are the main topics to be discussed: existence of an irrational number, the axiom of completeness, upper lower bounds of sets in R, consequences of completeness like Archimedean property of real numbers, Density of Q in R, existence of square roots, countability of Q and uncountability of R , various cardinality results, Cantor's original proof for uncountability of R, and Cantor's theorem on power sets.

The first section 1.1 may be briefly discussed and is not meant for examination purposes.
[The topics to be discussed in this module can be found in Chapter 1]
Module 2 Sequences and Series
Total Teaching Hours: 40

Students must have already encountered the idea of infinite series through the example of geometric progression. After discussing the rearrangement concept of infinite series, the following topics are to be introduced rigorously:

Limit of a sequence, diverging sequences, examples, algebraic operations on limits, and order properties of sequences and limits, the Monotone Convergence Theorem, Cauchy's condensation test for convergence of a series, various other tests for the convergence series, the BolzanoWeierstrass theorem, the Cauchy criterion for convergence of a sequence, rearrangement of absolutely convergent series.

The first section 2.1 may be briefly discussed and is not meant for examination purposes.
[The topics to be discussed in this module can be found in Chapter 2]

Module 3 Topology of Metric Spaces

This module is intended to be a beginner for learning abstract metric spaces. To motivate the students, the Cantor set should be constructed and shown in the beginning. Then move to the topics open and closed sets in R, and what about their complements, Compactness of sets (defined using sequential convergence), open covers and compactness, perfect and connected sets in R, and finally the Baire's theorem.

The first section 3.1 may be briefly discussed and is not meant for examination purposes.
[The topics to be discussed in this module can be found in Chapter 3]

Reference

1. R G Bartle, D Sherbert. Introduction to Real Analysis, 3rd Edition, John Wiley \& Sons
2. W. Rudin. Principles of Mathematical Analysis, Second Edition, McGraw-Hill
3. Terrence Tao. Analysis I, Hindustan Book Agency

Reference

1. John H Mathews, Russel W Howell. Complex Analysis for Mathematics and Engineering, Jones and Bartlett Publishers.
2. Erwin Kreyszig. Advanced Engineering Mathematics, 10th Edition, Wiley-India
3. James Brown, Ruel Churchill. Complex Variables and Applications, Eighth Edition, McGraw-Hill

SEMESTER-5

AUMM 543: ABSTRACT ALGEBRA - GROUP THEORY

Total Teaching Hours: 90	No of Lecture Hours/Week: 5
Max Marks: 80	Credits: $\mathbf{4}$

Text: Joseph Gallian. Contemporary Abstract Algebra, 8th Edition, Cengage Learning

Module 1 Group theory: Introduction	Total Teaching Hours: 30

The concept of group is to be introduced before rigorously defining it. The symmetries of a square can be a starting point for this. After that, definition of group should be stated and should be clarified with the help of examples. After discussing various properties of groups, finite groups and their examples should be discussed. The concept of subgroups with various characterizations also should be discussed. After introducing the definition of cyclic groups, various examples, and important features of cyclic groups and results on order of elements in such groups should be discussed.
[The topics to be discussed in this module can be found in Chapters 1, 2, 3, 4]
Module 2 Permutation Groups and Automorphisms
Total Teaching Hours: 24
This module starts with defining and analysing various properties permutation groups which forms one of the most important class of examples for non-abelian, finite groups. After defining operations on permutations, their properties are to be discussed. To motivate the students, the example of check-digit scheme should be discussed (This section on check-digit scheme is not meant for the examinations). Then we proceed to define the notion of equivalence of groups viz. isomorphisms. Several examples are to be discussed for explaining this notion. The properties of isomorphisms are also to be discussed together with special classes of isomorphisms like automorphisms and inner automorphisms before finishing the module with the classic result of Cayley on finite groups.
[The topics to be discussed in this module can be found in Chapters 5, 6]

Module 3 Lagrange's Theorem and its Applications

In this module we prove one of the most important results in group theory which is the Langrange's theorem on counting cosets of a finite group. The concept of cosets of a group should be defined giving many examples before proving the Lagrange's theorem. As some of the applications of this theorem, the connection between permutation groups and rotations of cube and soccer ball should be discussed. The section on Rubik's cube and section on internal direct products need not be discussed.
[The topics to be discussed in this module can be found in Chapters 7, 9]

Module 4 Homomorphisms and Isomorphisms	Total Teaching Hours: 18

Here the concept of group homomorphisms should be defined with sufficient number of examples. After proving the first isomorphism theorem, the fundamental theorem of isomorphism for finitely generated abelian groups should be introduced and proved. Classifying groups based on the fundamental theorem of finitely generated abelian groups should be discussed in detail.
[The topics to be discussed in this module can be found in Chapters 10, 11]

Reference

1. D S Dummit, R M Foote. Abstract Algebra, 3rd Edition, Wiley
2. I N Herstein. Topics in Algebra, Vikas Publications

Text: Erwin Kreyszig. Advanced Engineering Mathematics, 10th Edition, Wiley-India

Module1 First Order Differential Equations and Applications

In this module we discuss first order equations and various methods to solve them. Sufficient number of exercises also should be done for understanding the concepts thoroughly. The main topics in this module are the following:
Modelling a problem, basic concept of a differential equation, its solution, initial value problems, geometric meaning (direction fields), separable ODE, reduction to separable form, exact ODEs and integrating factors, reducing to exact form, homogeneous and non-homogeneous linear ODEs, special equations like Bernoulli equation, orthogonal trajectories, understanding the existence and uniqueness of solutions theorem.
[The topics to be discussed in this module can be found in Chapter 1]
Module 2 Second Order Differential Equations and Applications

Total Teaching Hours: 27
As in the first module, we discuss second order equations and various methods to solve them. Sufficient number of exercises also should be done for understanding the concepts thoroughly. The main topics in this module are the following:
homogeneous linear ODE of second order, initial value problem, basis, and general solutions, finding a basis when one solution is known, homogeneous linear ODE with constant coefficients (various cases that arise depending on the characteristic equation), differential operators, EulerCauchy Equations, existence and uniqueness of solutions with respect to Wronskian, solving nonhomogeneous ODE via the method of undetermined coefficients, various applications of techniques, solution by variation of parameters, modelling of mass-spring system, forced oscillation and resonance.
[The topics to be discussed in this module can be found in Chapter 2]

Reference

1. G. F. Simmons. Differential Equations with applications and Historical notes, Tata McGraw-Hill, 2003
2. H Anton, I Bivens, S Davis. Calculus, 10th Edition, John Wiley \& Sons
3. Peter V. O' Neil. Advanced Engineering Mathematics, Thompson Publications, 2007

SEMESTER-5

AUMM 545 : MATHEMATICS SOFTWARE - LaTex \& SageMath

Total Teaching Hours: 72	No of Lecture Hours/Week: $\mathbf{4}$
Max Marks: 80	Credits: 3
Cour	

Course Outcomes:

- CO1: Enable students to typeset the project report which is a compulsory requirement for finishing their undergraduate mathematics programme successfully.
- CO2: Enable students to see how the computational techniques they have learned in the previous semesters can be put into action with the help of software so as to reduce human effort.
- CO3: To learn use SageMath for further computations in their own in the forthcoming semester.

Text: No prescribed texts. See the list of Reference texts given below

Module 1	LaTex for preparing a Project Report in Mathematics	Total Teaching Hours: 36

Graphical User Interface (GUI)/ Editor like Kile or TeXstudio should be used for providing training to the students. The main topics in this module are following:

Typesetting a simple article and compiling it
How spaces are treated in the document
Document layout: various options to be included in the documentclass command, page styles, splitting files into smaller files, breaking line and page, using boxes (like, mbox) to keep text unbroken across lines, dividing document in to parts like frontmatter, mainmatter, backmatter, chapters, sections, etc, cross referencing with and without page number, adding footnotes.
Emphasizing words with lemph, \texttt, \textsl, \textit, lunderline etc.
Basic environments like enumerate, itemize, description, flushleft, flusuright, center, quote, quotation.
Controlling enumeration via the enumerate package.
Tables: preparing a table and floating it, the longtable environment.
Typesetting mathematics: basic symbols, equations, operators, the equation environment and reference to it, the displaymath environment, exponents, arrows, basic functions, limits, fractions, spacing in the mathematics environments, matrices, aligning various objects, multi-equation environments, suppressing numbering for one or more equations, handling long equations, phantoms, using normal text in math mode, controlling font size, typesetting theorems, definitions, lemmas, etc, making text bold in math mode, inserting symbols and environments (array, pmatrix, etc) using the support of GUIs.

Figures: Including JPG, PNG graphics with graphicx package, controlling width, height etc., floating figures, adding captions, the wrapfig package.
Adding references/bibliography and citing them, using the package hyperref to add and control hypertext links, creating presentations with pdfscreen, creating new commands.
Fonts: changing font size, various fonts, math fonts.
Spacing: changing line spacing, controlling horizontal, vertical spacing, controlling the margins using the geometry package, fullpage package.
Preparing a dummy project with titlepage, acknowledgement, certificates, table of contents (using \tableofcontents), list of tables, table of figures, chapters, sections, bibliography (using the thebibliography environment). This dummy project should contain atleast one example from each of the topic in the syllabus, and should be submitted for internal evaluation before the end semester practical examination.

Module 2 Doing Mathematics with SageMath
Total Teaching Hours: 36
Starting SageMath using a browser, how to use the sage cell server https://sagecell. sagemath.org/, how to use SageMath Cloud, creating and saving a sage worksheet, saving the worksheet to an.sws file, moving it and re-opening it in another computer system.
Using sagemath as a calculator, basic functions (square root, logarithm, numeric value, exponential, trigonometric, conversion between degrees and radians, etc.).
Plotting: simple plots of known functions, controlling range of plots, controlling axes, labels, gridlines, drawing multiple plots on a single picture, adding plots, polar plotting, plotting implicit functions, contour plots, level sets, parametric 2D plotting, vector fields plotting, gradients;
Matrix Algebra: Adding, multiplying two matrices, row reduced echelon forms to solve linear system of equations, finding inverses of square matrices, determinants, exponentiation of matrices, computing the kernel of a matrix.
Defining own functions and using it, composing functions, multi variate functions.
Polynomials: Defining polynomials, operations on them like multiplication and division, expanding a product, factorizing a polynomial, finding gcd.
Solving single variable equations, declaring multiple variables, solving multi variable equations, solving system of non-linear equations, finding the numerical value of roots of equations.
complex number arithmetic, finding complex roots of equations.
Finding derivatives of functions, higher order derivatives, integrating functions, definite and indefinite integrals, numerical integration, partial fractions and integration.
Combinatorics \& Number theory: Permutations, combinations, finding gcd, lcm, prime factorization, prime counting function, nth prime function, divisors of a number, counting divisors, modular arithmetic.
Vector calculus: Defining vectors, operations like sum, dot product, cross product, vector valued functions, divergence, curl, multiple integrals.
Computing Taylor, McLaurin's polynomials, minimization and Lagrange multipliers, constrained and unconstrained optimization.

Internal Evaluation: A dummy project report prepared in LATEX should be submitted as assignment for internal evaluation for 5 marks. Another practical record should be submitted the content of which should be problems and their outputs evaluated using SageMath. This record should be awarded a maximum of 10 marks which is earmarked for the internal evaluation examination.

Problems to be included in the Examination:

1. Find all local extrema and inflection points of a function
2. Traffic flow optimization
3. Minimum surface area of packaging
4. Newton's method for finding approximate roots
5. Plotting and finding area between curves using integrals
6. Finding the average of a function
7. Finding volume of solid of revolution
8. Finding solution for a system of linear equations
9. Finding divergence and curl of vector valued functions
10. Using differential calculus to analyze a quintic polynomial's features, for finding the optimal graphing window
11. Using Pollard's $p-1$ Method of factoring integers, to try to break the RSA cryptosystem
12. Expressing gcd of two integers as a combination of the integers (Bezout's identity)

References

1. Tobias Oetiker, Hubert Partl, Irene Hyna and Elisabeth Schlegl. The (Not So) Short Introduction to LATEX2e, Samurai Media Limited (or available online at http://mirrors.ctan.org/info/lshort/english/lshort.pdf)
2. Leslie Lamport. LATEX: A Document Preparation System, Addison-Wesley, Reading, Massachusetts, second edition, 1994
3. LATEX Tutorials|A Primer, Indian TeX Users Group, available online at https://www.tug.org/twg/mactex/tutorials/ltxprimer-1.0.pdf
4. H. J. Greenberg. A Simplified introduction to LATEX, available online at https://www.ctan.org/tex-archive/info/simplified-latex/
5. Using Kile - KDE Documentation, https://docs.kde.org/trunk4/en/extragear-office/ kile/ quick _using.html
6. TeXstudio: user manual, http://texstudio.sourceforge.net/manual/current/ usermanual_ en.html
7. The longtable package - TeXdoc.net, http://texdoc.net/texmf-dist/doc/latex/ tools/ longtable.pdf
8. Wrap fig - TeXdoc.net, http://texdoc.net/texmf-dist/doc/latex/wrapfig/ wrapfig-doc.pdf
9. The geometry package, http://texdoc.net/texmf-dist/doc/latex/geometry/geometry.pdf
10. The fullpage package, http://texdoc.net/texmf-dist/doc/latex/preprint/fullpage.pdf
11. The SageMathCloud, https://cloud.sagemath.com/
12. Gregory V. Bard. Sage for Undergraduates, American Mathematical Society, available online at http://www.gregorybard.com/Sage.html
13. Tuan A. Le and Hieu D. Nguyen. SageMath Advice for Calculus available online at http://users.rowan.edu/~nguyen/sage/SageMathAdviceforCalculus.pdf

SEMESTER-5

AUMM 581.a : ACTUARIAL SCIENCE (Open Course)

Total Teaching Hours: $\mathbf{5 4}$	No of Lecture Hours/Week: $\mathbf{3}$
Max Marks: $\mathbf{8 0}$	Credits: $\mathbf{2}$

Course Outcomes:

- CO1: Study the concept of Risk
- CO2: Learn the role of statistics in Insurance
- CO3: Understand Insurance business in India.

Text: Shylaja R. Deshmukh: Actuarial Statistics University press. [Chapters 1-6]
Module 1 Introduction to Insurance Business and Statistics
Total Teaching Hours: 12
Introduction to Insurance Business: What is Actuarial Science? Concept of Risk, Role of statistics in Insurance, Insurance business in India. Introductory Statistics: Some important discrete distributions, Some important continuous distributions, Multivariate distributions.
Module 2 Feasibility and Risk Models in Insurance Business

Total Teaching Hours: 21

Feasibility of Insurance business and risk models for short terms: Expected value principle, Notion of utility, risk models for short terms Future Lifetime distribution and Life tables: Future life time random variable, Curate future-life time, life tables, Assumptions for fractional ages, select and ultimate life tables.
Module 3 Benefits in Life Insurance and Annuities
Total Teaching Hours: 21
Actuarial Present values of benefit in Life insurance products: Compound interest, Discount factor, Benefit payable at the moment of death, Benefit payable at the end of year of death, relation between A and A^{-}. Annuities, certain, continuous life annuities, Discrete life annuities, Life annuities with mthly payments.

Reference

1. Bowers, Jr., N. L et al: Actuarial Mathematics, 2nd Edition, The society of Actuaries, Illinois, Sahaumberg, 1997
2. Palande, P. S. et al: Insurance in India: Changing policies and Emerging Opportunities, Response Books, New Delhi, 2003
3. Purohit, S. G. et al: Statistics using R, Narosa, New Delhi, 2008
4. www.actuariesindia.org

SEMESTER-5

AUMM 581.b : Business Mathematics (Open Course)

Total Teaching Hours: 54	No of Lecture Hours/Week: 3
Max Marks: 80	Credits: $\mathbf{2}$

Course Outcomes:

- CO1: Basic Mathematics of Finance
- CO2: Differentiation and their applications to Business and Economics
- CO3: Methods of construction of index numbers

Text: B M Aggarwal: Business Mathematics and Statistics Vikas Publishing House, New Delhi, 2009

Module 1 Basic Mathematics of Finance	Total Teaching Hours: 18

Basic Mathematics of Finance: Nominal rate of Interest and effective rate of interest, Continuous Compounding, force of interest, compound interest calculations at varying rate of interest, present value, interest and discount, Nominal rate of discount, effective rate of discount, force of discount, Depreciation.
[The topics to be discussed in this module can be found in Chapter 8 of Unit I, Sections: 1-7 \& 9 of the prescribed text]

Module 2 Calculus and its Applications in Economics	Total Teaching Hours: 18

Differentiation and their applications to Business and Economics: Meaning of derivatives, rules of differentiation, standard results.

Maxima and Minima, concavity, convexity and points of inflection, elasticity of demand, Price elasticity of demand. (basics only for doing problems of chapter 5 of Unit 1).

Integration and their applications to Business and Economics: Meaning, rules of integration, standard results, Integration by parts, definite integration (basics only for doing problems of chapter 7 of Unit 1 of text).

Marginal cost, marginal revenue, Consumer's surplus, producer's surplus, consumer's surplus under pure competition, consumer's surplus under monopoly.
[The topics to be discussed in this module can be found in Chapter 4 of unit I, Sections: 3-6; Chapter 5 of Unit I, Sections: 1-7;
Chapter 6 of unit I, Sections: $1,2,4,10,11 \&$ Chapter 7 of unit I, Sections: 1-5]

Module 3 Index Numbers and Time Series

Index Numbers: Definition, types of index numbers, methods of construction of price index numbers, Laspeyer's price index number, Paasche's price index number, Fisher ideal index number, advantages of index numbers, limitations of index numbers.
Time series: Definition, Components of time series, Measurement of Trend
[The topics to be discussed in this module can be found in
Chapter 6 of Unit II, Sections: 1, 3, 4, 5, 6, 8, 16, 17\& Chapter 7 of Unit II Sections: 1, 2, 4 of the prescribed text]

Reference

1. Qazi Zameeruddin, et al: Business Mathematics, Vikas Publishing House, New Delhi, 2009
2. Alpha C Chicny, Kevin Wainwright: Fundamental methods of Mathematical Economics, McGraw Hill, Singapore, 2005.

SEMESTER-5	
AUMM 581.c: Operations Research (Open Course)	
Total Teaching Hours: 54	Credits: 2
Max Marks: 80	Cof Lecture Hours/Week: 3
Course Outcomes:	
- Formulation and solution of Linear Programming models	
- CO2:	Solution of Transportation problems and Assignment problems
- CO3: Project management using PERT and CPM	

SEMESTER-5

AUMM 581.d: Basic Mathematics (Open Course)

Total Teaching Hours: 54	No of Lecture Hours/Week: 3
Max Marks: $\mathbf{8 0}$	Credits: $\mathbf{2}$
Course Outcomes:	
- CO1: Getting a working knowledge in basic arithmetic of whole numbers, fractions and	
- CO2: Understanding of ratios, proportions, percent and the relation among them	
- CO3: Understanding basic Statistics	

Texts: 1. J Miller, M O'Neil, N Hyde. Basic College Mathematics, 2nd Edition, McGraw Hill Higher Education
2. Steven T Karris. Mathematics for Business, Science and Technology, 2nd Edition, Orchard Publications

Module 1 Basic Arithmetic of Whole Numbers, Fractions and Decimals

Place Value of numbers, standard Notation and Expanded Notation, Operations on whole numbers, exponentiation, square roots, order of operations, computing averages, rounding, estimation, applications of estimation, estimating product of numbers by rounding, exponents, square roots, order of operations, computing averages.
Fractions: multiplication and division of fractions, applications, primes and composites, factorization, simplifying fractions to lowest terms, multiplication of fractions, reciprocal of fractions, division of fractions, operations of mixed fractions, LCM, Decimal notation and rounding of numbers, fractions to decimals, multiplication of decimals, division of decimals, order of operations involving decimals, Scientific notation of numbers, operations in scientific notations, square and cube roots of numbers, laws of exponents and logarithms.
[The topics to be discussed in this module can be found in Chapters 1, 2, 3 of Text-1 and Chapters 1, 2 of Text-2]

Module 2 Ratios, Proportions, Percent and the Relation among them
Ratio and proportions: Simplifying ratios to lowest terms, ratios of mixed numbers, unit rates and cost, ratios and proportion, similar figures.
Percent: Fractions - decimals - percent, converting between these three relations with proportions, equations involving percent, increase and decrease in percent, finding simple and compound interests.
[The topics to be discussed in this module can be found in Chapters 4, 5 of Text-1]

Module 3 Basic Statistics, Simple Equations

Basic Statistics: Data and tables, various graphs like bar graphs, pictographs, line graphs, frequency distributions and histograms, circle graphs (pie charts), interpreting them, circle graphs and percent, mean, median, mode, weighted mean Solving simple equations, quadratic equations (real roots only), cubic equations, arithmetic geometric series, systems of two and three equations, matrices and system of equations.
[The topics to be discussed in this module can be found in Chapter 9 of Text-1 and Chapters 2, 3 of Text-2]

Reference

Charles P McKeague. Basic Mathematics, 7th Edition, Cengage Learning

SEMESTER-5
 Project Preparation

Total Teaching Hours: 18	No of Lecture Hours/Week: 1
Max Marks: 80	Credits: 4

Course Outcomes:

- CO1: Making the students understand various concepts behind undertaking a project
- CO2: To study the way of preparing the final report.
- CO3: Make the students able to choose and prepare topics in their own and they should understand the layout of a project report.

Text: Daniel Holtom, Elizabeth Fisher. Enjoy Writing Your Science Thesis or Dissertation -A step by step guide to planning and writing dissertations and theses for undergraduate and graduate science students, Imperial College Press.

[Even though the Project preparation starts in Semester-5, is completed and valued in Semester-6. The credit 4 will be counted with Semester 6 only].
To complete the undergraduate programme, the students should undertake a project and prepare and submit a project report on a topic of their choice in the subject mathematics or allied subjects. The work on the project should start in the beginning of the 5th semester itself, and should end towards the middle of the 6th semester. This course (without any examination in the 5th semester, with a project report submission and project viva in the 6th semester) is introduced for making the students understand various concepts behind undertaking such a project and preparing the final report. Towards the end of this course the students should be able to choose and prepare topics in their own and they should understand the layout of a project report. To quickly get into the business, the first chapter of text [1] may be completely discussed. Apart from that, for detailed information, the other chapters in this book may be used in association with the other references given below.
The main topics to discuss in this course are the following:
Quick overview: The structure of Dissertation, creating a plan for the Dissertation, planning the results section, planning the introduction, planning and writing the abstract, composing the title, figures, tables, and appendices, references, making good presentations, handling resources like notebooks, library, computers etc., preparing an interim report.
Topics in detail: Planning and Writing the Introduction, Planning and Writing the Results, Figures and Tables, Planning and Writing the Discussion, Planning and Writing the References, Deciding on a Title and Planning and Writing the Other Bits, Proofreading, Printing, Binding and Submission, oral examinations, preparing for viva, Taking the Dissertation to the Viva.
Layout: Fonts and Line Spacing, Margins, Headers, and Footers, Alignment of Text, Titles and Headings, Separating Sections and Chapters.

Reference

1. Kathleen McMillan, Jonathan Weyers. How to write Dissertations \& Project Reports, Pearson Education Limited.
2. Peg Boyle Single. Demystifying dissertation writing: a streamlined process from choice of topic to final text, Stylus Publishing, Virginia.

| [The topics to be discussed in this module can be found in
 Chapter $\mathbf{5}$ of the prescribed text] |
| :--- | :--- |
| Module 3 Riemann Integration |
| In the last module, the theory of Riemann integration is to be discussed. Main topics to be included |
| in this module are defining the Riemann integral using upper, lower Riemann sums, and the |
| integrability criterion, continuity and the existence of integral, algebraic operations on integrable |
| functions, (The results and examples on convergence of sequence of functions and integrability |
| may be omitted), the fundamental theorem of calculus and its proof, Lebesgue's criterion for |
| Riemann integrability. |
| (The section 7.1 may be briefly discussed and is not meant for examination purposes). |
| [The topics to be discussed in this module can be found in |
| Chapter 7 of the prescribed text] |
| Reference |
| 1. R G Bartle, D Sherbert; Introduction to real analysis, 3rd Edition, John Wiley \& Sons |
| 2. W. Rudin, Principles of Mathematical Analysis, Second Edition, McGraw-Hill |
| 3. Terrence Tao; Analysis I, Hindustan Book Agency |

3. Erwin Kreyszig. Advanced Engineering Mathematics, 10th Edition, Wiley-India.
4. James Brown, Ruel Churchill. Complex Variables and Applications, Eighth Edition, McGraw-Hill.

Text: Joseph Gallian; Contemporary Abstract Algebra, 8th Edition, Cengage Learning

Module 1 Rings and Ideals

Total Teaching Hours: 24
The concept of rings, subrings with many examples should be discussed here. Next comes the definition and properties of integral domains, fields, and the characteristic of rings. Ideals, how factor rings are defined using ideals, should be explained next. The definition of prime and maximal ideals with examples should be discussed after that.
[The topics to be discussed in this module can be found in Chapters 12, 13, 14]
Module 2 Ring Homomorphisms and Polynomial Rings
Total Teaching Hours: 24
After introducing the definition of ring homomorphisms, their properties should be discussed. The field of quotients of an integral domain should be discussed next. The next topic is the definition and various properties of polynomial rings over a commutative ring. Various results on operations on polynomials such as division algorithm, factor theorem, remainder theorem etc., should be discussed next. The definition and examples of PID's should be discussed next, before moving to the factorization of polynomials. Tests of irreducibility and reducibility and the unique factorization of polynomials over special rings should be discussed.
[The topics to be discussed in this module can be found in Chapter 15, 16, 17]

Module 3 Integral Domains

Total Teaching Hours: 24
In the last module, we introduce more rigorous topics like various type of integral domains. The divisibility properties of integral domains and definition of primes in a general ring should be introduced. Unique factorization domains and the Euclidean domains should be discussed next with examples. Results on these special integral domains are also to be discussed.
[The topics to be discussed in this module can be found in Chapter 18]

Reference

1. D S Dummit, R M Foote; Abstract Algebra, 3rd Edition, Wiley
2. I N Herstein, Topics in Algebra, Vikas Publications

SEMESTER-6

AUMM 644: LINEAR ALGEBRA

Total Teaching Hours: 90	No of Lecture Hours/Week: 5
Max Marks: 80	Credits: $\mathbf{4}$

Course Outcomes:

- CO1: To study the basics of linear algebra
- CO2: To study matrix theory with emphasis on their geometrical aspects.
- CO3: To use the methods studied for solving practical problems.

Text: Gilbert Strang, Linear Algebra and Its Applications, 4th Edition, Cengage Learning

Module 1 Linear Equations and Geometry
Total Teaching Hours: 15
This module deals with a study on linear equations and their geometry. After introducing the geometrical interpretation of linear equations, following topics should be discussed:

Various operations on column vectors, technique of Gaussian elimination, operations involving elementary matrices, interchanging of rows using elementary matrices, triangular factorisation of matrices and finding inverse of matrices by the elimination method.

[The topics to be discussed in this module can be found in Chapter 1 (excluding sec.7)]

Module 2 Vector Spaces and Linear Transformations

Total Teaching Hours: 25
Towards the study of vector spaces, specifically Rn, we define them with many examples. Subspaces are to be defined next. After discussing the idea of null space of a matrix. The solving linear equations (which was one to some extent in the first module) and finding solutions to nonhomogeneous systems from the corresponding homogeneous systems. After this, linear independence and dependence of vectors, their spanning, basis for a space, its dimension concepts are to be introduced. The column, row, null, left null spaces of a matrix is to be discussed next. When inverses of a matrix exist related to its column/row rank should be discussed. Towards the end of this module, linear transformations (through matrices) and their properties are to be discussed. Types of transformations like rotations, projections, reflections are to be considered next.
[The topics to be discussed in this module can be found in Chapter 2 (excluding sec. 7)]

Module 3 Determinants and Applications	Total Teaching Hours: 25

This module is intended for making the idea and concepts of determinants stronger. Its properties like what happens when rows are interchanged, linearity of expansion along the first row, etc., are to be discussed. Breaking a matrix into triangular, diagonal forms and finding the determinants,
expansion in cofactors, their applications like solving system of equations, finding volume etc are to be discussed next.

[The topics to be discussed in this module can be found in Chapter 4]

Module 4 Diagonalization of Matrices

Total Teaching Hours: 25
Here we conclude our analysis of matrices. The problem of finding eigen values a matrix is to be introduced first. Next goal is to diagonalize a matrix. This concept should be discussed first, and move to the discussion on the use of eigen vectors in diagonalization.

Applications of finding the powers of matrices should be discussed next. The applications like the concept of Markov Matrices, Positive Matrices and their applications in Economics should be discussed. Complex matrices and operations on them are to be introduced next.

The concept orthogonality of vectors may be required here from one of the previous sections in text and it should be briefly introduced and discussed here. The module ends with similar matrices, and similarity transformation related ideas. How to diagonalize some special matrices like symmetric and Hermitian matrices are also to be discussed in this module.
[The topics to be discussed in this module can be found in Chapter 2 (excluding sec. 4)]

Reference

1. Video lectures of Gilbert Strang Hosted by MIT Open Courseware available at https: //ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures/
2. Thomas Banchoff, John Wermer; Linear Algebra Through Geometry, 2nd Edition, Springer
3. T S Blyth, E F Robertson: Linear Algebra, Springer, Second Edition.
4. David C Lay: Linear Algebra, Pearson
5. K Hoffman and R Kunze: Linear Algebra, PHI

Harmonic Analysis: Fundamental or first harmonic, Second harmonic, Problems
[The topics to be discussed in this module can be found in Chapter 11 Sections 1-2 of Text-1 and in Text-2]

Module 3 Fourier Integrals and Transforms
Total Teaching Hours: 18

Fourier Integral, From Fourier Series to Fourier Integral, Applications of Fourier Integrals, Fourier Cosine Integral and Fourier Sine Integral, Fourier Cosine and Sine Transforms, Linearity, Transforms of Derivatives, Fourier Transform, Complex Form of the Fourier Integral, Fourier Transform and Its Inverse, Linearity. Fourier Transform of Derivatives, Convolution.
[The topics to be discussed in this module can be found in Chapter 11 Sections 7-9 of Text-1; Excluding Physical Interpretation: Spectrum and Discrete Fourier Transform (DFT) \& Fast Fourier Transform (FFT)]

Reference

1. Peter V. O' Neil, Advanced Engineering Mathematics, Thompson Publications, 2007
2. M Greenberg, Advanced Engineering Mathematics, 2nd Edition, Prentice Hall.
3. B.S Grewal, Higher Engineering Mathematics, Khanna Publishers

SEMESTER-6

AUMM 691.a : GRAPH THEORY (ELECTIVE)

Total Teaching Hours: 54	No of Lecture Hours/Week: 3

Max Marks: 80

Credits: 2

Course Outcomes:

- CO1: To build an awareness of some of the fundamental concepts in Graph Theory
- CO2: To develop better understanding of the subject so as to use these ideas skilfully in solving real world problems.

Text: John Clark, Derek Allan Holton. A first look at Graph Theory, World Scientific

Module 1 Graph Theory: Basics	Total Teaching Hours: 27

Basics: The Definition of a Graph, Graphs as Mathematical Models, other basic concepts and definitions, Vertex Degrees, Subgraphs, Paths and Cycles, The Matrix Representation of Graphs, Fusing graphs (The fusion algorithm for connectedness need not be discussed). Trees and Connectivity: Definitions and Simple Properties of trees, Bridges, Spanning Trees, Cut Vertices and Connectivity.
[The topics to be discussed in this module can be found in Chapter 1 Sections 1-8 \& Chapter 2 Sections 1-3, 6]

Module 2 Eulerian, Hamiltonian and Planar Graphs
Total Teaching Hours: 27
Euler Tours and Hamiltonian Cycles: Euler Tours (Fleury's algorithm need not be discussed), The Chinese Postman Problem (Only Statement of the problem is to be discussed), Hamiltonian Graphs, The Travelling Salesman Problem (Only Statement of the problem is to be discussed, The TwoOptimal Algorithm and The Closest Insertion Algorithm need not be discussed).
Planar Graphs: Plane and Planar Graphs, Euler's Formula, The Platonic Bodies, Kuratowski's Theorem (Without proof).
[The topics to be discussed in this module can be found in Chapter 3 Sections 1-4 \& Chapter 5 Sections 1-4]

Reference

1. Balakrishnan, Ranganatahan. A Text Book of Graph Theory, 2nd Edition, Springer
2. V Balakrishnan. Graph Theory, Schaums Outline
3. J A Body, U S R Murthy. Graph Theory with Applications, The Macmillan Press
4. Robin J Wilson. Introduction to Graph Theory 5th edition, Prentice Hall

SEMESTER-6

AUMM 691.b: LINEAR PROGRAMMING WITH SageMath (ELECTIVE)

Total Teaching Hours: 54	No of Lecture Hours/Week: 3
Max Marks: 80	Credits: 2
Course Outcomes: - CO1: To provide a strong introduction to various type of problems that can be solved via linear programming. - CO2: Workout examples on planning, transportation, assignment, workforce scheduling, portfolio optimization, Minimum Cost Flow Problem, Maximum Flow Problem. - CO3: Understand geometry of optimal solutions and geometric characterisation of optimality.	

Text: Roy H Kwon. Introduction to Linear Optimization and extensions with MATLAB, 4th Edition, CRC Press, New York.

Module 1 Introduction to Linear Programming
 Total Teaching Hours: 18

This module is aimed at providing a strong introduction to various type of problems that can be solved via linear programming. Main topics in this module are the following:

Introduction to linear programming through problems, basic underlying assumptions like Proportionality, Divisibility, Additivity, Certainty, more general problems, standard form of a linear program, conversion rules to arrive at such a form like Converting unrestricted variables, Converting inequality constraints, Converting maximization to minimization, their examples, standard linear programming terminology, examples on planning, transportation, assignment, workforce scheduling, portfolio optimization, Minimum Cost Flow Problem, Maximum Flow Problem.
[The topics to be discussed in this module can be found in Chapter 1]
Module 2 Geometry of Linear Programming
Total Teaching Hours: 18
This module begins with the geometry of linear programming and later proceeds to the Fundamental Theorem of Linear Programming which is a basis for algorithm development for linear programs. The main topics in this module are the following:
Geometry of the Feasible Set, graphically representing the solution space, hyperplane, polyhedron, polytope, convex sets, geometry of optimal solutions, geometric characterisation of optimality, extreme points and basic feasible solutions, generating basic feasible solutions, resolution theorem, fundamental theorem linear programming.

[The topics to be discussed in this module can be found in Chapter 2]

Module 3 Simplex Methods

Total Teaching Hours: 18

Here we introduce the simplex method, which is an important method to solve linear programming problems. The main topics in this module are the following:
Introducing the simplex method, examples, adjacent basic feasible solutions, checking optimality of a basic feasible solution, direction-step length theorem, its application in developing the steps of simplex method, examples, finite termination under non-degeneracy, generating an initial basic feasible solution using two phase and Big M method, degeneracy and cycling, anti-cycling rules like Bland's rule, and lexicographic rules.
[The topics to be discussed in this module can be found in Chapter 3]

Note:

1. There should not be any problems to solve using the SageMath software in the End Semester Examination (ESE). The ESE should be based only on the theory and problems to be solved either manually or using a non-programmable scientific calculator.
2. Students may be permitted to use non-programmable scientific calculator in the end semester examination.
3. One of the internal evaluation examinations should be done using SageMath Software, as a practical examination.
4. All the problems in this course should also be computationally solved using the software SageMath. The references provided below, especially Ref- 1 and Chapter 4 of Ref- 2 can be used mainly for this.

Reference

1. Sage Reference Manual: Numerical Optimization, Release 7.6 by the Sage Development Team available online at http://doc.sagemath.org/pdf/en/ reference/numerical/ numerical.pd
2. Gregory V. Bard. Sage for Undergraduates, American Mathematical Society, available online at http://www.gregorybard.com/Sage.html
3. Frederick S Hillier, Gerald J Lieberman. Introduction to operations research, 10th Edition, McGraw Hill Education.
4. Paul R Thie, G. E. Keough. An introduction to linear programming and game theory, 3rd Edition, John Wiley \& Sons
5. Wayne L Winston, Operations Research Applications and Algorithms, 4th Edition, Cengage Learning.

AUMM 691.c: NUMERICAL METHODS and Hands-On SageMath (ELECTIVE)

Total Teaching Hours: 54	No of Lecture Hours/Week: 3
Max Marks: 80	Credits: 2

Course Outcomes:
CO1: Get introduced to Numerical analysis with particular emphasize to finding approximate solutions to problems.
CO2: Study numerical methods in Linear Algebra
CO3: Acquiring Hands-on experiences with SageMath
Text: 1. Introductory Methods of Numerical Analysis, SS Sastry, Prentice Hall India, New Delhi
2. Erwin Kreyszig. Advanced Engineering Mathematics, 10th Edition, Wiley-India

Module 1 General Concepts in Numerical Analysis
Total Teaching Hours: 21
General concepts in Numerical analysis: Introduction, Floating-Point Form of Numbers, Round off, Loss of Significant Digits, Errors of Numeric Results, Error Propagation, Basic Error Principle, Algorithm Stability.

Solution of Equations by Iteration: Fixed-Point Iteration for Solving Equations $f(x)=0$, Bisection Method, Newton-Raphson Method for Solving Equations $f(x)=0$, Generalized Newton's Method, Order of an Iteration Method Speed of Convergence, Convergence of Newton's Method.

Interpolation: Lagrange Interpolation for unevenly spaced points and Newton's Divided Difference Interpolation. Newton's Forward Difference and Back-ward Difference Interpolation Formula for evenly spaced points, Cubic Spline Interpolation.
[The topics to be discussed in this module can be found in Chapter 19 Sections 1-4 of Text 2 and Chap. 1-3 in Text 1.]

Module 2 Numerical Differentiation and Integration and Numerical Methods in Linear Algebra	Total Teaching Hours: 21

Numerical Differentiation and Integration: Numerical Differentiation using forward differences, Trapezoidal Rule, Simpson's Rule of Integration, Romberg Integration. Numerical Solution of Ordinary Differential Equations, Methods for First-Order ODEs, Picard's Iteration Method, Euler's method (Numeric Method), Improved Euler Method, Runge-Kutta Methods (RK Methods) of fourth order.

Numerical Methods in Linear Algebra: Linear Systems: Gauss Elimination, Linear Systems: LUFactorization, Matrix Inversion, Cholesky's Method, Gauss-Jordan Elimination. Matrix Inversion. Linear Systems: Solution by Iteration, Gauss-Seidel Iteration Method, Jacobi Iteration

[The topics to be discussed in this module can be found in Chapters 19, 20, 21 of TEXT-2 and Chap 4, 5, 6 of Text-1]

Module 3 Hands-on Experience with SageMath
Total Teaching Hours: 12
Hands-on experiences with SageMath s/w. Solution of Linear System of Equations, Matrix operations, Inverse of Matrices, Numerical Integration and numerical solution of ODE, RK4 methods

Note:

1. Internal Evaluation: A dummy project report prepared in SageMath should be submitted as assignment for internal evaluation for 5 marks. A practical examination should be conducted with problems to be evaluated using SageMath. This practical session should be awarded a maximum of 10 marks which is earmarked for the internal evaluation examination.
2. There should not be any problems to solve using the SageMath software in the End Semester Examination (ESE). The ESE should be based only on the theory and problems to be solved either manually or using a non-programmable scientific calculator.
3. Students may be permitted to use non-programmable scientific calculator in the end semester examination.
4. One of the internal evaluation examinations should be done using SageMath Software, as a practical examination.

All the problems in this course should also be computationally solved using the software SageMath. The references provided below, especially ref.text-1 and chapter 4 of ref. text- 2 can be used mainly for this.

Reference

1. Sage Reference Manual: Numerical Optimization, Release 7.6 by the Sage Development Team available online at http://doc.sagemath.org/pdf/en/reference/numerical/ numerical.pdf
2. Gregory V. Bard. Sage for Undergraduates, American Mathematical Society, available online at http://www.gregorybard.com/Sage.html
3. Richard L Burden, J Douglas Faires. Numerical Analysis, 9th Edition, Cengate Learning
4. E Isaacson, H B Keller. Analysis of Numerical Methods, Dover Publications, New York
5. W. Cheney, D Kincaid. Numerical Mathematics and Computing, 6th Edition, Thomson Brooks/Cole

SEMESTER-6

AUMM 691.d: FUZZY MATHEMATICS (ELECTIVE)

Total Teaching Hours: 54	No of Lecture Hours/Week: 3
Max Marks: 80	Credits: $\mathbf{2}$
Course Outcomes:	
\bullet CO1: Get an overview of fuzzy sets	
\bullet CO2: Learn fuzzy arithmetic.	
\bullet CO3: Get the notion of fuzzy relations.	

Text: George J Klir, Yuan. Fuzzy sets and fuzzy logic: Theory and applications, Prentice Hall of India Pvt. Ltd., New Delhi, 2000

Module 1 Fuzzy Sets
From crisp sets to fuzzy sets: a paradigm shift. Introduction -crisp sets: an overview-fuzzy sets: basic types and basic concepts of fuzzy sets, Fuzzy sets versus crisp sets, Additional properties of cuts, Representation of fuzzy sets, Extension Principle of Fuzzy Sets.
[The topics to be discussed in this module can be found in Chapter 1, 2]
Module 2 Operations on Fuzzy Sets and Fuzzy Numbers
Total Teaching Hours: 18
Operations on fuzzy sets and Fuzzy Arithmetic: Operations on fuzzy sets-types of operations, fuzzy complements, fuzzy intersections: t-norms, fuzzy unions: t-conorms.

Fuzzy numbers, Linguistic variables, Arithmetic operations on intervals, Arithmetic operations on fuzzy numbers.
[The topics to be discussed in this module can be found in Chapter 3 Sections 1-4 \&Chapter 4 Sections 1-4]

Module 3 Fuzzy Relations

Total Teaching Hours: 18
Fuzzy relations: Crisp versus fuzzy relations, projections and cylindric extensions, Binary fuzzy relations, Binary relations on a single set, Fuzzy equivalence relations.
[The topics to be discussed in this module can be found in Chapter 5 Sections 1-5]

Reference

1. Klir G J and T Folger. Fuzzy sets, Uncertainty and Information, PHI Pvt.Ltd., New Delhi, 1998
2. H J Zimmerman. Fuzzy Set Theory and its Applications, Allied Publishers, 1996
3. Dubois D and Prade H. Fuzzy Sets and Systems: Theory and Applications, Ac. Press, NY, 1988

FDP B.Sc. CHEMISTRY (Complementary)			$\begin{gathered} \text { Instruct } \\ \text { ional } \\ \text { h/week } \end{gathered}$	Credit	$\begin{array}{\|c\|} \hline \text { ESE } \\ \text { durat } \\ \text { ion } \end{array}$	$\begin{gathered} \hline \mathrm{CE} \\ \% \end{gathered}$	$\begin{gathered} \text { ESE } \\ \% \end{gathered}$
Sem ester	Paper Code	Title of Course					
1.	AUMM 131.2b	Differential Calculus of Functions of One Variable, Complex Numbers and Vector Algebra	4	3	3	20	80
2.	AUMM 231.2b	Multivariate Calculus, Vector Differentiation and Infinite Series	4	3	3	20	80
3.	AUMM 331.2b	Linear Algebra, Probability Theory and Numerical Methods	5	4	3	20	80
4.	AUMM 431.2b	Differential Equations, Vector Integration and Abstract Algebra	5	4	3	20	80

SEMESTER-1	
AUMM 131.2b:	
(Differential Calculus and Complex Numbers)	

Text: \quad| K F Riley, M P Hobson, S J Bence. Mathematical Methods for Physics and |
| :--- |
| |
| Engineering, 3rd Edition, Cambridge University Press |

Module 1 Differentiation with Applications to Chemistry
Total Teaching Hours: 18
Differentiation of products of functions; the chain rule; quotients; implicit differentiation; logarithmic differentiation; Leibnitz theorem. (These topics should be quickly reviewed before going to advanced topics; students should be asked to do more problems from exercises, and these problems should be included in assignments).
The following topics in this module should be devoted more attention and time.
Special points of a function (especially, stationary points); curvature; theorems of differentiation Rolle's' Theorem, Mean Value Theorem.

Note: Make the students aware of the applications of differentiation in Chemistry. Use reference book-1 or any suitable text book for the same.
[The topics to be discussed in this module can be found in Chapter 2, Sections 2.1.2-2.1.7 (Review), Sections 2.1.8-2.1.10]

Module 2 Partial Differentiation

Total Teaching Hours: 18
Basics, the total differential and total derivative, Exact and inexact differentials, theorems of partial differentiation, the chain rule, Change of variables, Taylors theorem for many-variable functions, Stationary values of many-variable functions, Stationary values under constraints

[The topics to be discussed in this module can be found in Chapter 5, Sections 1-9]	
Module 3Basic Integration with Applications to Chemistry	
Integration by parts; reduction formulae; infinite and improper integrals; plane polar coordinates; integral inequalities; applications of integration (finding area, volume etc.) [The topics to be discussed in this module can be found in Chapter 2, Sections 2.2.8- 2.2.13]	
Module 4 Complex Numbers and Hyperbolic Functions	Total Teaching Hours: 18
Basic operations (Addition and subtraction; modulus and argument; multiplication; complex conjugate; division), Polar representation of complex numbers (Multiplication and division in polar form), de Movire's theorem (trigonometric identities; finding the nth roots of unity; solving polynomial equations), Complex logarithms and complex powers, Applications to differentiation and integration, Hyperbolic functions (Definitions; hyperbolic trigonometric analogies; identities of hyperbolic functions; solving hyperbolic equations; inverses of hyperbolic functions; calculus of hyperbolic functions) [The topics to be discussed in this module can be found in Chapter 3, Sections 1-7]	
Reference	
1. Anton, I Bivens, S Davis. Calculus, 10th Edition, John Wiley \& Sons	
2. Mary L Boas. Mathematics Methods in the Physical Sciences, 3rd Edition, Wiley	
3. George B Arfken, Hans J Weber, Frank E Harris. Mathematical Methods for Physicists, 7th	
Edition, Academic Press.	
4. Richard G. Rice and Duong D. Do, Applied Mathematics and Modeling for Chemical	
Engineers, second edition, Wiley	

SEMESTER-2

AUMM 231.2b: MATHEMATICS -II (Vector Differentiation, Infinite Series and Multiple Integrals)

Total Teaching Hours: 72	No of Lecture Hours/Week: 4
Max Marks: 80	Credits: 3
Con	

Course Outcomes:

- CO1: Understanding multiple integration and its applications in Chemistry.
- CO2: Study Definition and Summation of series of various types.
- CO3: Knowledge in Vector differentiation

Texts: K F Riley, M P Hobson, S J Bence. Mathematical Methods for Physics and Engineering, 3rd Edition, Cambridge University Press

Module 1 Basic Vector Algebra
Total Teaching Hours: 18
Scalars and vectors, Addition and subtraction of vectors, Multiplication by a scalar, Basis vectors and components, Magnitude of a vector, Multiplication of vectors (Scalar product; vector product; scalar triple product; vector triple product), Equations of lines, planes and spheres, using vectors to find distances (Point to line; point to plane; line to line; line to plane)
[The topics to be discussed in this module can be found in Chapter 7, Sections 1-8]

Module 2 Infinite Series and Limits

Definition, Summation of series of various types (Arithmetic series; geometric series; arithmeticogeometric series; the difference method; series involving natural numbers; transformation of series).
Convergence of infinite series (Absolute and conditional convergence; series containing only real positive terms; alternating series test).
Operations with series (Sum and product)
Power series (Convergence of power series; operations with power series)
Taylor series (Taylors theorem need not be proved, but the statement should be explained through problems); approximation errors; standard Maclaurin series
[The topics to be discussed in this module can be found in Chapter 4, Sections 1-6]

Module 3 Vector Differentiation

Differentiation of vectors, Composite vector expressions; differential of a vector, Integration of vectors, Space curves, Vector functions of several arguments, Surfaces, Scalar and vector fields.

Vector operators, Gradient of a scalar field; divergence of a vector field; curl of a vector field Vector operator formulae, Vector operators acting on sums and products; combinations of grad, div and curl, Cylindrical and spherical polar coordinates.
[The topics to be discussed in this module can be found in Chapter 10, Sections 1-9]

Module 4 Multiple Integrals and Applications

Total Teaching Hours: 18
Double integrals, Triple integrals, Applications of multiple integrals (Areas and volumes), Change of variables in multiple integrals- Change of variables in double integrals; evaluation some special infinite integrals, change of variables in triple integrals; general properties of Jacobians.
[The topics to be discussed in this module can be found in Chapter 6, Sections 1-4]

Reference

1. Anton, I Bivens, S Davis. Calculus, 10th Edition, John Wiley \& Sons
2. Mary L Boas. Mathematics Methods in the Physical Sciences, 3rd Edition, Wiley
3. George B Arfken, Hans J Weber, Frank E Harris. Mathematical Methods for Physicists, 7th Edition, Academic Press
4. Erwin Kreyszig. Advanced Engineering Mathematics, 10th Edition, Wiley-India

SEMESTER-3 AUMM 331.2b: MATHEMATICS - III (Linear Algebra, Probability Theory and Numerical Methods)		
Total Teaching Hours: 90	No of Lecture Hours/Week: 5	
Max Marks: 80	Credits: 4	
Course Outcomes: - CO1: To study linear vector spaces, eigen values and eigen vectors, diagonalizing matrices, applications of diagonalization - CO2: Getting some basic ideas on Probability and Statistical methods - CO3: Knowledge on Algebraic and transcendental equations and some interpolation methods		
Texts: 1. K F Riley, M P Hobson, S J Bence. Mathematical Methods for Physics and Engineering, 3rd Edition, Cambridge University Press 2. Mary L Boas. Mathematics Methods in the Physical Sciences, 3rd Edition, Wiley.		
Module 1 Basic Linea		Total Teaching Ho
Matrices and row reduction, Determinants, Cramer's rule for solving system of equations, vectors, lines and planes, linear combinations, linear functions, linear operators, linear dependence and independence, special matrices like Hermitian matrices and formulas, linear vector spaces, eigen values and eigen vectors, diagonalizing matrices, applications of diagonalization. Inverse of a matrix, Rank of a matrix and Cayley Hamilton theorem. [The topics to be discussed in this module can be found in Chapter 3 of Text-2]		
Module 2 Probability and Stat		Total Teaching Hours:
Basics, Sample Space, Probability Theorems, Methods of Counting Random Variables, Continuous Distributions, Binomial Distribution, The Normal or Gaussian Distribution, The Poisson Distribution.		
Module 3 Numerical Method		Total Teaching Hours: 30
Algebraic and transcendental equations (Rearrangement of the equation; linear interpolation; binary chopping; Newton-Raphson method).		
Convergence of iteration schemes, Simultaneous linear equations (Gaussian elimination; GaussSeidel iteration; tridiagonal matrices) Numerical integration (Trapezium rule; Simpsons rule; Gaussian integration; Monte Carlo methods), Finite differences, Differential equations (Difference equations; Taylor series solutions; prediction and correction; Runge-Kutta methods; isoclines).		

[The topics to be discussed in this module can be found in

 Chapter 27, Sections 1-6 of Text-1]
Reference

1. H Anton, I Bivens, S Davis. Calculus, 10th Edition, John Wiley \& Sons
2. George B Arfken, Hans J Weber, Frank E Harris. Mathematical Methods for Physicists, 7th Edition, Academic Press
3. Erwin Kreyszig. Advanced Engineering Mathematics, 10th Edition, Wiley-India
4. Richard L Burden, J Douglas Faires. Numerical Analysis, 9th Edition, Cengate Learning.

SEMESTER-4

AUMM 431.2b: MATHEMATICS -IV (Differential Equations, Vector Integration and Abstract Algebra)

Total Teaching Hours: 90	No of Lecture Hours/Week: 5
Max Marks: 80	Credits: $\mathbf{4}$

Course Outcomes:

- CO1: Study the formation and solution of first and higher order differential equations, and their applications, especially in Chemistry.
- CO2: Evaluating line, surface, volume integrals
- CO3: Study about group and Representation theory

Text: K F Riley, M P Hobson, S J Bence. Mathematical Methods for Physics and Engineering, 3rd Edition, Cambridge University Press

Module $1 \begin{array}{c}\text { Ordinary Differential Equations and Laplace } \\ \text { Transforms }\end{array}$	Total Teaching Hours: 30

First-order ordinary differential equations: General form of solution, First-degree first-order equations (Separable-variable equations; exact equations; inexact equations, integrating factors; linear equations; homogeneous equations; isobaric equations; Bernoullis equation; miscellaneous equations) Higher-degree first-order equations (Equations soluble for p ; for x ; for y ; Clairaut's equation).
Higher-order ordinary differential equations: Linear equations with constant coefficients, (Finding the complementary function $y_{c}(x)$; finding the particular integral $y_{p}(x)$; constructing the general solution $y_{c}(x)+y_{p}(x)$; linear recurrence relations; Laplace transform method) Linear equations with variable coefficients (The Legendre and Euler linear equations; exact equations; partially known complementary function; variation of parameters; Green's functions; canonical form for second-order equations).
General ordinary differential equations- Dependent variable absent; independent variable absent; non-linear exact equations; isobaric or homogeneous equations; equations homogeneous in x or y alone; equations having, $y=A e^{x}$ as a solution.
[The topics to be discussed in this module can be found in Chapters 14, 15]
Module 2 Vector Integration and Applications \quad Total Teaching Hours: 18
Evaluating line integrals; physical examples; line integrals with respect to a scalar Connectivity of regions, Greens theorem in a plane, Conservative fields and potentials, Surface integrals, Evaluating surface integrals; vector areas of surfaces; physical examples, Volume integrals, Volumes of three-dimensional regions, Integral forms for grad, div and curl, Green's theorems
(without proof); other related integral theorems; physical applications, Stokes theorem and related theorems (without proof), Related integral theorems; physical applications

[The topics to be discussed in this module can be found in Chapter 11]

Module 3 Abstract Algebra

Definition of a group; examples of groups, Finite groups, Non-Abelian groups, Permutation groups, Mappings between groups, Subgroups Subdividing a group (Equivalence relations and classes; congruence and cosets; conjugates and classes).

Representation theory, Equivalent representations, Reducibility of a representation, The orthogonality theorem for irreducible representations Characters (Orthogonality property of characters), Counting irreps using characters (Summation rules for irreps), Construction of a character table.

[The topics to be discussed in this module can be found in Chapter 28; Chapter 29 Sections 3-8]

Reference

1. H Anton, I Bivens, S Davis. Calculus, 10th Edition, John Wiley \& Sons
2. Mary L Boas. Mathematics Methods in the Physical Sciences, 3rd Edition, Wiley
3. George B Arfken, Hans J Weber, Frank E Harris. Mathematical Methods for Physicists, 7th Edition, Academic Press
4. Erwin Kreyszig. Advanced Engineering Mathematics, 10th Edition, Wiley-India
5. David M Bishop. Group theory and Chemistry, Dover Publications

FDP B.Sc. PHYSICS (Complementary)			Instruct ional h/week	Credit	ESE durat ion (h)	$\begin{aligned} & \hline \text { CE } \\ & (\%) \end{aligned}$	$\begin{gathered} \hline \text { ESE } \\ (\%) \end{gathered}$
Sem ester	Paper Code	Title of Course					
1.	AUMM 131.2d	Differential Calculus of Functions of One Variable, Vector Algebra and Infinite Series	4	3	3	20	80
2.	AUMM 231.2d	Multivariate Calculus, Vector Differentiation and Complex Numbers	4	3	3	20	80
3.	AUMM 331.2d	Differential Equations, Vector Integration, Fourier Series and Linear Algebra	5	4	3	20	80
4.	AUMM 431.2d	Advanced Complex Analysis, Special Functions and Probability Theory	5	4	3	20	80

SEMESTER-1

SEMESTER-1 AUMM 131.2d: MATHEMATICS-I (Differential Calculus of Functions of One Variable, Vector Algebra and Infinite Series)	
Total Teaching Hours: 72	No of Lecture Hours/Week: 4
Max Marks: 80	Credits: 3
Course Outcomes: - CO1: Get knowledge - CO2: Equipped to link own experience. - CO3: A basic knowled	of mathematical methods to Physics. d in Calculus to the real world and the bra and Infinite Series

Text: K F Riley, M P Hobson, S J Bence. Mathematical Methods for Physics and Engineering, 3rd Edition, Cambridge University Press

Module 1 Differentiation with Applications to Physics
Total Teaching Hours: 18
Differentiation of products of functions; the chain rule; quotients; implicit differentiation; logarithmic differentiation; Leibnitz theorem. (These topics should be quickly reviewed before going to advanced topics; students should be asked to do more problems from exercises, and these problems should be included in assignments)
The following topics in this module should be devoted more attention and time:
Special points of a function (especially, stationary points); curvature; theorems of differentiation Rolle's' Theorem, Mean Value Theorem.
[The topics to be discussed in this module can be found in Chapter 2, Sections 2.1.2-2.1.7
(Review), 2.1.8-2.1.10]
Module 2 Integration with Applications to Physics
Total Teaching Hours: 18
Integration by parts; reduction formulae; infinite and improper integrals; plane polar coordinates; integral inequalities; applications of integration (finding area, volume etc.)
[The topics to be discussed in this module can be found in Chapter 2, Sections 2.2.8-2.2.13]

Module 3 Infinite Series and Limits

Total Teaching Hours: 18

Definition, Summation of series of various types (Arithmetic series; geometric series; arithmeticogeometric series; the difference method; series involving natural numbers; transformation of series)

Convergence of infinite series (Absolute and conditional convergence; series containing only real positive terms; alternating series test).
Operations with series (Sum and product).
Power series (Convergence of power series; operations with power series).
Taylor series (Taylors theorem need not be proved, but the statement should be explained through problems); approximation errors; standard Maclaurin series.

[The topics to be discussed in this module can be found in Chapter 4, Sections 1-6]

Module 4 Vector Algebra
 Total Teaching Hours: 18

Scalars and vectors, Addition and subtraction of vectors, Multiplication by a scalar, Basis vectors and components, Magnitude of a vector, Multiplication of vectors (Scalar product; vector product; scalar triple product; vector triple product), Equations of lines, planes and spheres, using vectors to find distances (Point to line; point to plane; line to line; line to plane).
[The topics to be discussed in this module can be found in Chapter 7, Sections 1-8]

Reference

1. H Anton, I Bivens, S Davis. Calculus, 10th Edition, John Wiley \& Sons
2. Mary L Boas. Mathematics Methods in the Physical Sciences, 3rd Edition, Wiley
3. George B Arfken, Hans J Weber, Frank E Harris. Mathematical Methods for Physicists, 7th Edition, Academic Press.

SEMESTER-2

AUMM 231.2d: MATHEMATICS -II (Multivariate Calculus, Vector Differentiation and Complex Numbers)

Total Teaching Hours: 72	No of Lecture Hours/Week: 4
Max Marks: 80	Credits: $\mathbf{3}$
Course Outcomes:	
$\bullet \quad$ CO1:	Understanding Differentiation of functions with more variables, and multiple - CO2:
integration	Acquiring knowledge in Vector differentiation
\bullet	CO3:
	Studying trigonometric identities, nth roots of unity, solving polynomial equations, etc., using theory of Complex Numbers

Text: K F Riley, M P Hobson, S J Bence. Mathematical Methods for Physics and Engineering, 3rd Edition, Cambridge University Press

Module 1 Complex Numbers and Hyperbolic Functions

Basic operations (Addition and subtraction; modulus and argument; multiplication; complex conjugate; division), Polar representation of complex numbers (Multiplication and division in polar form), De Movire's theorem (trigonometric identities; finding the nth roots of unity; solving polynomial equations), Complex logarithms and complex powers, Applications to differentiation and integration, Hyperbolic functions (Definitions; hyperbolic trigonometric analogies; identities of hyperbolic functions; solving hyperbolic equations; inverses of hyperbolic functions, calculus of hyperbolic functions).
[The topics to be discussed in this module can be found in Chapter 3, Sections 1-7]
Module 2 Partial Differentiation
Total Teaching Hours: 18
Basics, The total differential and total derivative, Exact and inexact differentials, theorems of partial differentiation, The chain rule, Change of variables, Taylors theorem for many-variable functions, Stationary values of many-variable functions, Stationary values under constraints.
[The topics to be discussed in this module can be found in Chapter 5, Sections 1-9]
Module 3 Multiple Integrals
Total Teaching Hours: 18
Double integrals, Triple integrals, Applications of multiple integrals (Areas and volumes), Change of variables in multiple integrals - Change of variables in double integrals; evaluation some special infinite integrals, change of variables in triple integrals; general properties of Jacobians.
[The topics to be discussed in this module can be found in Chapter 6, Sections 1-4]

Module 4 Vector Differentiation
 Total Teaching Hours: 18

Differentiation of vectors, Composite vector expressions; differential of a vector, Integration of vectors, Space curves, Vector functions of several arguments, Surfaces, Scalar and vector fields.

Vector operators, Gradient of a scalar field; divergence of a vector field; curl of a vector field Vector operator formulae, Vector operators acting on sums and products; combinations of grad, div and curl, Cylindrical and spherical polar coordinates.
[The topics to be discussed in this module can be found in Chapter 10, Sections 1-9]

Reference

1. H Anton, I Bivens, S Davis. Calculus, 10th Edition, John Wiley \& Sons
2. Mary L Boas. Mathematics Methods in the Physical Sciences, 3rd Edition, Wiley
3. George B Arfken, Hans J Weber, Frank E Harris. Mathematical Methods for Physicists, 7th Edition, Academic Press
4. Erwin Kreyszig. Advanced Engineering Mathematics, 10th Edition, Wiley-India

SEMESTER-3	
AUMM 331.2d:	
(Differential Equations, Vector Integration,	
Fourier Series and Linear Algebra)	

Texts:	1. K F Riley, M P Hobson, S J Bence. Mathematical Methods for Physics and
Engineering, 3rd Edition, Cambridge University Press	
2.	Mary L Boas. Mathematics Methods in the Physical Sciences, 3rd Edition, Wiley
Module 1 Ordinary Differential Equations	Total Teaching Hours: 30

First-order ordinary differential equations: General form of solution, First-degree first-order equations (Separable-variable equations; exact equations; inexact equations, integrating factors; linear equations; homogeneous equations; isobaric equations; Bernoulli's equation; miscellaneous equations) Higher-degree first-order equations (Equations soluble for p ; for x ; for y ; Clairaut's equation).

Higher-order ordinary differential equations: Linear equations with constant coefficients, (Finding the complementary function $y_{c}(x)$; finding the particular integral $y_{p}(x)$; constructing the general solution $y_{c}(x)+y_{p}(x)$; linear recurrence relations; Laplace transform method) Linear equations with variable coefficients (The Legendre and Euler linear equations; exact equations; partially known complementary function; variation of parameters; Green's functions; canonical form for second-order equations).

General ordinary differential equations- Dependent variable absent; independent variable absent; non-linear exact equations; isobaric or homogeneous equations; equations homogeneous in x or y alone; equations having, $y=A e^{x}$ as a solution.

[The topics to be discussed in this module can be found in Chapters 14, 15 of Text-1]

Module 2 Vector Integration and Applications

Evaluating line integrals; physical examples; line integrals with respect to a scalar Connectivity of regions, Greens theorem in a plane, Conservative fields and potentials, Surface integrals, Evaluating surface integrals; vector areas of surfaces; physical examples, Volume integrals, Volumes of three-dimensional regions, Integral forms for grad, div and curl, Green's theorems (without proof); other related integral theorems; physical applications, Stokes theorem and related theorems (without proof), Related integral theorems; physical applications
[The topics to be discussed in this module can be found in Chapter 11 of Text-1]
Module 3 Fourier Series and Fourier Transforms
Total Teaching Hours: 18
Basic definition, Simple Harmonic Motion and Wave Motion; Periodic Functions, Applications of Fourier Series, Average Value of a Function, Fourier Coefficients, Dirichlet Conditions, Complex Form of Fourier Series, Other Intervals, Even and Odd Functions, Parseval's Theorem, Fourier Transforms.
[The topics to be discussed in this module can be found in Chapter 7 of Text-2]

Module 4 Basic Linear Algebra	Total Teaching Hours: 24

Matrices and row reduction, Determinants, Cramer's rule for solving system of equations, vectors, lines and planes, linear combinations, linear functions, linear operators, linear dependence and independence, special matrices like Hermitian matrices and formulas, linear vector spaces, eigen values and eigen vectors, diagonalizing matrices, applications of diagonalization.
[The topics to be discussed in this module can be found in Chapter 3 of Text-2]

Reference

1. H Anton, I Bivens, S Davis. Calculus, 10th Edition, John Wiley \& Sons
2. George B Arfken, Hans J Weber, Frank E Harris. Mathematical Methods for Physicists, 7th Edition, Academic Press
3. Erwin Kreyszig. Advanced Engineering Mathematics, 10th Edition, Wiley-India

SEMESTER-4

AUMM 431.2d: MATHEMATICS -IV (Advanced Complex Analysis, Special Functions and Probability Theory)

Total Teaching Hours: 90

No of Lecture Hours/Week: 5
Max Marks: 80
Credits: 4
Course Outcomes:

- CO1: Learn analytic functions, evaluation of definite integrals using residue theorem, conformal mapping and some of its applications.
- CO2: Understand special functions like, Factorial Function, Gamma Function and Beta Functions and study their properties.
- CO3: Getting some basic ideas on Probability and Statistical methods.

Text: Mary L Boas. Mathematics Methods in the Physical Sciences, 3rd Edition, Wiley

Module 1 Advanced Complex Analysis	Total Teaching Hours: 36

Functions of a complex variable, Analytic functions, the Cauchy-Riemann relations, Contour integrals Cauchy's theorem, Cauchy's integral formula, Laurent series, the residue theorem, methods of finding residues, evaluation of definite integrals using residue theorem, residues at infinity, conformal mapping and some of its applications.
[The topics to be discussed in this module can be found in Chapter 14]
Module 2 Special Functions
Total Teaching Hours: 18
The Factorial Function, Definition of the Gamma Function; Recursion Relation, The Gamma Function of Negative Numbers, Some Important Formulas Involving Gamma Functions, Beta Functions, Beta Functions in Terms of Gamma Functions.
[The topics to be discussed in this module can be found in Chapter 11]

Module 3 Probability and Statistics	Total Teaching Hours: 36

Basics, Sample Space, Probability Theorems, Methods of Counting Random Variables, Continuous Distributions, Binomial Distribution, The Normal or Gaussian Distribution, The Poisson Distribution.
[The topics to be discussed in this module can be found in Chapter 15, Sections 1-9]

Reference

1. K F Riley, M P Hobson, S J Bence. Mathematical Methods for Physics and Engineering, 3rd Edition, Cambridge University Press
2. H Anton, I Bivens, S Davis. Calculus, 10th Edition, John Wiley \& Sons
3. George B Arfken, Hans J Weber, Frank E Harris. Mathematical Methods for Physicists, 7th Edition, Academic Press
4. Erwin Kreyszig. Advanced Engineering Mathematics, 10th Edition, Wiley-India.

FDP BA ECONOMICS (Complementary)		Instructi onal h/week	Credit	ESE durat ion	CE $(\%)$	ESE $(\%)$	
Sem ester	Paper Code	Title of Course					
1.	AUMM 131.1a	Differential Calculus of Functions of One Variable	3	2	3	20	80
2.	AUMM 231.1a	Multivariate Differential Calculus, Sequences and Series	3	3	3	20	80
3.	AUMM 331.1a	Integral Calculus and Linear Algebra	3	3	3	20	80
4. AUMM 431.1a	Differential Equations, Difference Equations and Linear Programming	3	3	3	20	80	

SEMESTER-1	
AUMM 131.1a: MATHEMATICS FOR ECONOMICS-I	
(Differential Calculus of Functions of One Variable)	

Module 3 Applications of Multivariable Calculus	Total Teaching Hours: 18

Tools for Comparative Statics: The chain rule, more general chain rules, derivatives of functions defined implicitly, partial elasticities, homogeneous functions of two variables, linear approximations and differentials, systems of equations.

Multivariable Optimization: Simple two-variable optimization.

[The topics to be discussed in this module can be found in Chapter 16 Sections 1-5, 8, 9 \& Chapter 17 Section 1]

Reference

1. G D Allen, Mathematical Analysis for Economics, AITBS Publishers, D-2/15. Krishnan Nagar, New Delhi
2. Taro Yamane, Mathematics for Economists, An Elementary Survey, PHI, New Delhi.
3. Chiang A.C. and K.Wainwright, Fundamental Methods of Mathematical Economics, $4^{\text {th }}$ Edition, McGraw-Hill, New York, 2005.(cw)
4. Dowling E.T, Introduction to Mathematical Economics, 2nd Edition, Schaum's Series, McGraw- Hill, New York, 2003(ETD)
5. Mary George, Thomaskutty, A Text Book of Mathematical Economics, Discovery Publishers, New Delhi.

SEMESTER-3

AUMM 331.1a: MATHEMATICS FOR ECONOMICS -III (Integral Calculus and Linear Algebra)

Total Teaching Hours: 54	No of Lecture Hours/Week: $\mathbf{3}$
Max Marks: 80	Credits: $\mathbf{3}$

Course Outcomes:

- CO1: Learn different methods integration and apply it to find the area under a curve.
- CO2: Understand the applications of integration through functions familiar in Economics.
- CO3: Learn basics of matrix algebra.

Text: Knut Sydsaeter, Peter J. Hammond: Mathematics for Economic Analysis, Pearson, 1995

Module 1 Introductory Linear Algebra
Linear Algebra - Vectors and Matrices: Systems of linear equations, vectors, geometric interpretation of vectors, the scalar product, lines and planes, matrices and matrix operations, matrix multiplication, rules for matrix multiplication, the transpose.
Determinants and Matrix Inversion: Determinants of order 2, determinants of order 3, determinants of order n , basic rules for determinants, expansion by cofactors, inverse of a matrix, a general formula for the inverse, Cramer's rule.
[The topics to be discussed in this module can be found in Chapters 12, 13]
Module 2 Further Topics in Linear Algebra Total Teaching Hours: 18

Further Topics in Linear Algebra: Linear independence, The rank of a matrix, Eigen values. Cayley Hamilton theorem and its applications, power of a matrix.
[The topics to be discussed in this module can be found in Chapter 14 Sections 1-4]

Module 3 Integration and Applications	Total Teaching Hours: 18

Integration: Areas under curves, indefinite integrals, the definite integral, economic application of integration.

Further Topics in Integration: Integration by parts, integration by substitution, extending the concept of the integral, a note on income distribution and Lorenz curves.
[The topics to be discussed in this module can be found in Chapters 10, 11]

Reference

1. G D Allen, Mathematical Analysis for Economics, AITBS Publishers, D-2/15. Krishnan Nagar, New Delhi
2. Taro Yamane, Mathematics for Economists, An Elementary Survey, PHI, New Delhi.
3. Chiang A.C. and K.Wainwright, Fundamental Methods of Mathematical Economics, $4^{\text {th }}$ Edition, McGraw-Hill, New York, 2005.(cw)
4. Dowling E.T, Introduction to Mathematical Economics, 2nd Edition, Schaum's Series, McGraw- Hill, New York, 2003(ETD)
5. Mary George, Thomaskutty, A Text Book of Mathematical Economics, Discovery Publishers, New Delhi.

SEMESTER-4

AUMM 431.1a: MATHEMATICS FOR ECONOMICS -IV (Linear Programming, Differential Equations and Difference Equations)

Total Teaching Hours: 54	No of Lecture Hours/Week: 3
Max Marks: 80	Credits: 3

Course Outcomes:

- CO1: To use linear programming methods in economic decision problems.
- CO2: To solve problems in Economics using difference equations.
- CO3: To learn various types of differential equations and methods to solve them.

Text: Knut Sydsaeter, Peter J. Hammond: Mathematics for Economic Analysis, Pearson, 1995
Module 1 Linear programming
Total Teaching Hours: 18
Linear programming: Preliminaries, introduction to duality theory, the duality theorem, a general economic interpretation, complementary slackness.
[The topics to be discussed in this module can be found in Chapter 19]
Module 2 Difference Equations
Total Teaching Hours: 18
Difference Equations: First order difference equations, compound interest and present discounted values, linear equations with a variable coefficient, second order equations, second order equations with constant coefficients.
[The topics to be discussed in this module can be found in Chapter 20]
Module 3 Differential Equations
Total Teaching Hours: 18
Differential Equations: First order differential equations, the direction is given - find the path, separable differential equations-I, separable differential equations-II, first order linear differential equations-I, first order linear differential equations-II, qualitative theory and stability, second order differential equations, second order differential equations with constant coefficients.
[The topics to be discussed in this module can be found in Chapter 21]

References

1. G D Allen, Mathematical Analysis for Economics, AITBS Publishers, D-2/15. Krishnan Nagar, New Delhi
2. Taro Yamane, Mathematics for Economists, An Elementary Survey, PHI, New Delhi.
3. Chiang A.C. and K.Wainwright, Fundamental Methods of Mathematical Economics, $4^{\text {th }}$ Edition, McGraw-Hill, New York, 2005.(cw)
4. Dowling E.T, Introduction to Mathematical Economics, 2nd Edition, Schaum's Series, McGraw- Hill, New York, 2003(ETD)
5. Mary George, Thomaskutty, A Text Book of Mathematical Economics, Discovery Publishers, New Delhi.
6. J. K. Sharma, Operations Research-Theory and Applications, 3rd,MacMillan India Ltd, Delhi.
